Домой Безопасность Внешний блок питания своими руками. Лучший самодельный блок питания. Регулируемый блок питания

Внешний блок питания своими руками. Лучший самодельный блок питания. Регулируемый блок питания

Сделать блок питания своими руками имеет смысл не только увлеченному радиолюбителю. Самодельный блок электропитания (БП) создаст удобства и сэкономит немалую сумму также в следующих случаях:

  • Для питания низковольтного электроинструмента, ради экономии ресурса дорогостоящей аккумуляторной батареи (АКБ);
  • Для электрификации помещений особо опасных по степени поражения электротоком: подвалов, гаражей, сараев и т.п. При питании их переменным током большая его величина в низковольтной проводке способна создать помехи бытовой технике и электронике;
  • В дизайне и творчестве для точной, безопасной и безотходной резки нагретым нихромом пенопласта, поролона, легкоплавких пластиков;
  • В светодизайне – использование специальных БП позволит продлить жизнь светодиодной ленты и получить стабильные световые эффекты. Питание подводных осветителей , и пр. от бытовой электросети вообще недопустимо;
  • Для зарядки телефонов, смартфонов, планшетов, ноутбуков вдали от стабильных источников электропитания;
  • Для электроакупунктуры;
  • И многих других, не имеющих прямого отношения к электронике, целей.

Допустимые упрощения

Профессиональные БП рассчитываются на питание нагрузки любого рода, в т.ч. реактивной. В числе возможных потребителей – прецизионная аппаратура. Заданное напряжение профи-БП должен поддерживать с высочайшей точностью неопределенно долгое время, а его конструкция, защита и автоматика должны допускать эксплуатацию неквалифицированным персоналом в тяжелых условиях, напр. биологами для питания своих приборов в теплице или в экспедиции.

Любительский лабораторный блок питания свободен от этих ограничений и поэтому может быть существенно упрощен при сохранении достаточных для собственного употребления качественных показателей. Далее, путем также несложных усовершенствований, из него можно получить БП специального назначения. Чем мы сейчас и займемся.

Сокращения

  1. КЗ – короткое замыкание.
  2. ХХ – холостой ход, т.е. внезапное отключение нагрузки (потребителя) или обрыв в ее цепи.
  3. КСН – коэффициент стабилизации напряжения. Он равен отношению изменения входного напряжения (в % или разах) к такому же выходного при неизменном токе потребления. Напр. напряжение сети упало «по полной», с 245 до 185В. Относительно нормы в 220В это будет 27%. Если КСН БП равен 100, выходное напряжение изменится на 0,27%, что при его величине 12В даст дрейф в 0,033В. Для любительской практики более чем приемлемо.
  4. ИПН – источник нестабилизированного первичного напряжения. Это может быть трансформатор на железе с выпрямителем или импульсный инвертор напряжения сети (ИИН).
  5. ИИН – работают на повышенной (8-100 кГц) частоте, что позволяет использовать легкие компактные трансформаторы на феррите с обмотками из нескольких-нескольких десятков витков, но не лишены недостатков, см. ниже.
  6. РЭ – регулирующий элемент стабилизатора напряжения (СН). Поддерживает на выходе заданную его величину.
  7. ИОН – источник опорного напряжения. Задает эталонное его значение, по которому совместно с сигналами обратной связи ОС устройство управления УУ воздействует на РЭ.
  8. СНН – стабилизатор напряжения непрерывного действия; попросту – «аналоговый».
  9. ИСН – импульсный стабилизатор напряжения.
  10. ИБП – импульсный блок питания.

Примечание: как СНН, так и ИСН могут работать как от ИПН промышленной частоты с трансформатором на железе, так и от ИИН.

О компьютерных БП

ИБП компактны и экономичны. А в кладовке у многих валяется БП от старого компа, морально устаревший, но вполне исправный. Так нельзя ли приспособить импульсный блок питания от компьютера для любительских/рабочих целей? К сожалению, компьютерный ИБП достаточно высоко специализированное устройство и возможности его применения в быту/на работе весьма ограничены:

Использовать ИБП, переделанный из компьютерного, обычному любителю целесообразно, пожалуй, только для питания электроинструмента; об этом см. далее. Второй случай – если любитель занимается ремонтом ПК и/или созданием логических схем. Но тогда он уже знает, как для этого приспособить БП от компа:

  1. Нагрузить основные каналы +5В и +12В (красные и желтые провода) нихромовыми спиральками на 10-15% номинальной нагрузки;
  2. Зеленый провод мягкого запуска (слаботочной кнопкой на передней панели системника) pc on замкнуть на общий, т.е. на любой из черных проводов;
  3. Вкл/выкл производить механически, тумблером на задней панели БП;
  4. При механическом (железном) I/O «дежурка», т.е. независимое питание USB портов +5В будет также выключаться.

За дело!

Вследствие недостатков ИБП, плюс их принципиальная и схемотехническая сложность, мы только в конце рассмотрим пару таких, но простых и полезных, и поговорим о методике ремонта ИИН. Основная же часть материала посвящена СНН и ИПН с трансформаторами промышленной частоты. Они позволяют человеку, только-только взявшему в руки паяльник, построить БП весьма высокого качества. А имея его на хозяйстве, освоить технику «потоньше» будет легче.

ИПН

Сначала рассмотрим ИПН. Импульсные подробнее оставим до раздела о ремонте, но у них с «железными» есть общее: силовой трансформатор, выпрямитель и фильтр подавления пульсаций. В комплексе они могут быть реализованы различным образом сообразно назначению БП.

Поз. 1 на Рис. 1 – однополупериодный (1П) выпрямитель. Падение напряжения на диоде наименьшее, ок. 2В. Но пульсация выпрямленного напряжения – с частотой 50Гц и «рваная», т.е. с промежутками между импульсами, поэтому конденсатор фильтра пульсаций Сф должен быть в 4-6 раз большей емкости, чем в прочих схемах. Использование силового трансформатора Тр по мощности – 50%, т.к. выпрямляется всего 1 полуволна. По этой же причине в магнитопроводе Тр возникает перекос магнитного потока и сеть его «видит» не как активную нагрузку, а как индуктивность. Поэтому 1П выпрямители применяются только на малую мощность и там, где по-иному никак нельзя, напр. в ИИН на блокинг-генераторах и с демпферным диодом, см. далее.

Примечание: почему 2В, а не 0,7В, при которых открывается p-nпереход в кремнии? Причина – сквозной ток, о котором см. далее.

Поз. 2 – 2-полупериодный со средней точкой (2ПС). Потери на диодах такие же, как в пред. случае. Пульсация – 100 Гц сплошная, так что Сф нужен наименьший из возможных. Использование Тр – 100% Недостаток – удвоенный расход меди на вторичную обмотку. Во времена, когда выпрямители делали на лампах-кенотронах, это не имело значения, а теперь – определяющее. Поэтому 2ПС используют в низковольтных выпрямителях, преимущественно повышенной частоты с диодами Шоттки в ИБП, однако принципиальных ограничений по мощности 2ПС не имеют.

Поз. 3 – 2-полупериодный мостовой, 2ПМ. Потери на диодах – удвоенные по сравнению с поз. 1 и 2. Остальное – как у 2ПС, но меди на вторичку нужно почти вдвое меньше. Почти – потому что несколько витков приходится доматывать, чтобы компенсировать потери на паре «лишних» диодов. Наиболее употребительная схема на напряжение от 12В.

Поз. 3 – двухполярный. «Мост» изображен условно, как принято в принципиальных схемах (привыкайте!), и повернут на 90 градусов против часовой стрелки, но на самом деле это пара включенных разнополярно 2ПС, как ясно видно далее на рис. 6. Расход меди как у 2ПС, потери на диодах как у 2ПМ, остальное как у того и другого. Строится в основном для питания аналоговых устройств, требующих симметрии напряжения: Hi-Fi УМЗЧ, ЦАП/АЦП и др.

Поз. 4 – двухполярный по схеме параллельного удвоения. Дает без дополнительных мер повышенную симметрию напряжения, т.к. асимметрия вторичной обмотки исключена. Использование Тр 100%, пульсации 100 Гц, но рваные, поэтому Сф нужны удвоенной емкости. Потери на диодах примерно 2,7В за счет взаимного обмена сквозными токами, см. далее, и при мощности более 15-20 Вт резко возрастают. Строятся в основном как маломощные вспомогательные для независимого питания операционных усилителей (ОУ) и др. маломощных, но требовательных к качеству электропитания аналоговых узлов.

Как выбрать трансформатор?

В ИБП вся схема чаще всего четко привязана к типоразмеру (точнее – к объему и площади поперечного сечения Sс) трансформатора/трансформаторов, т.к. использование тонких процессов в феррите позволяет упростить схему при большей ее надежности. Здесь «как-нибудь по-своему» сводится к точному соблюдению рекомендаций разработчика.

Трансформатор на железе выбирают с учетом особенностей СНН, или сообразуются с ними при его расчете. Падение напряжения на РЭ Uрэ не надо брать менее 3В, иначе КСН резко упадет. При увеличении Uрэ КСН несколько возрастает, но гораздо быстрее растет рассеиваемая РЭ мощность. Поэтому Uрэ берут 4-6 В. К нему добавляем 2(4)В потерь на диодах и падение напряжения на вторичной обмотке Тр U2; для диапазона мощностей 30-100 Вт и напряжений 12-60 В берем его 2,5В. U2 возникает преимущественно не на омическом сопротивлении обмотки (оно у мощных трансформаторов вообще ничтожно мало), а вследствие потерь на перемагничивание сердечника и создание поля рассеивания. Попросту, часть энергии сети, «накачанной» первичной обмоткой в магнитопровод, улетучивается в мировое пространство, что и учитывает величина U2.

Итак, мы насчитали, допустим, для мостового выпрямителя, 4+4+2,5 = 10,5В лишку. Прибавляем его к требуемому выходному напряжению БП; пусть это будет 12В, и делим на 1,414, получим 22,5/1,414 = 15,9 или 16В, это будет наименьшее допустимое напряжение вторичной обмотки. Если Тр фабричный, из типового ряда берем 18В.

Теперь в дело идет ток вторички, который, естественно, равен максимальному току нагрузки. Пусть нам нужно 3А; умножаем на 18В, будет 54Вт. Мы получили габаритную мощность Тр, Pг, а паспортную P найдем, поделив Pг на КПД Тр η, зависящий от Pг:

  • до 10Вт, η = 0,6.
  • 10-20 Вт, η = 0,7.
  • 20-40 Вт, η = 0,75.
  • 40-60 Вт, η = 0,8.
  • 60-80 Вт, η = 0,85.
  • 80-120 Вт, η = 0,9.
  • от 120 Вт, η = 0,95.

В нашем случае будет P = 54/0,8 = 67,5Вт, но такого типового значения нет, так что придется брать 80Вт. Для того, чтобы получить на выходе 12Вх3А = 36Вт. Паровоз, да и только. Впору научиться рассчитывать и мотать «трансы» самому. Тем более что в СССР были разработаны методики расчета трансформаторов на железе, позволяющие без потери надежности выжимать 600Вт из сердечника, который, при расчете по радиолюбительским справочникам, способен дать всего 250Вт. «Железный транс» вовсе не так туп, как кажется.

СНН

Выпрямленное напряжение нужно стабилизировать и, чаще всего, регулировать. Если нагрузка мощнее 30-40 Вт, необходима и защита от КЗ, иначе неисправность БП может вызвать аварию сети. Все это вместе делает СНН.

Простой опорный

Начинающему лучше сразу не лезть в большие мощности, а сделать для пробы простой высокостабильный СНН на 12в по схеме на Рис. 2. Его можно будет потом использовать как источник эталонного напряжения (точная его величина выставляется R5), для поверки приборов или как ИОН высококачественного СНН. Максимальный ток нагрузки этой схемы всего 40мА, но КСН на допотопном ГТ403 и таком же древнем К140УД1 более 1000, а при замене VT1 на кремниевый средней мощности и DA1 на любой из современных ОУ превысит 2000 и даже 2500. Ток нагрузки при этом также возрастет до 150-200 мА, что уже годится в дело.

0-30

Следующий этап – блок питания с регулировкой напряжения. Предыдущий выполнен по т. наз. компенсационной схеме сравнения, но переделать такой на большой ток сложно. Мы сделаем новый СНН на основе эмиттерного повторителя (ЭП), в котором РЭ и УУ совмещены всего в 1-м транзисторе. КСН выйдет где-то 80-150, но любителю этого хватит. Зато СНН на ЭП позволяет без особых ухищрений получить выходной ток до 10А и более, сколько отдаст Тр и выдержит РЭ.

Схема простого БП на 0-30В приведена на поз. 1 Рис. 3. ИПН для него – готовый трансформатор типа ТПП или ТС на 40-60 Вт со вторичной обмоткой на 2х24В. Выпрямитель типа 2ПС на диодах на 3-5А и более (КД202, КД213, Д242 и т.п.). VT1 устанавливается на радиатор площадью от 50 кв. см; очень хорошо подойдет старый от процессора ПК. При таких условиях этот СНН не боится КЗ, только VT1 и Тр греться будут, так что для защиты хватит предохранителя на 0,5А в цепи первичной обмотки Тр.

Поз. 2 показывает, насколько удобен для любителя СНН на ЭП: там схема БП на 5А с регулировкой от 12 до 36 В. Этот БП может отдать в нагрузку и 10А, если найдется Тр на 400Вт 36В. Первая его особенность – интегральный СНН К142ЕН8 (предпочтительно с индексом Б) выступает в необычной роли УУ: к его собственным 12В на выходе добавляется, частично или полностью, все 24В, напряжение от ИОН на R1, R2, VD5,VD6. Емкости С2 и С3 предотвращают возбуждение на ВЧ DA1, работающей в необычном режиме.

Следующий момент – устройство защиты (УЗ) от КЗ на R3, VT2, R4. Если падение напряжения на R4 превысит примерно 0,7В, VT2 откроется, замкнет на общий провод базовую цепь VT1, он закроется и отключит нагрузку от напряжения. R3 нужен, чтобы экстраток при срабатывании УЗ не вывел из строя DA1. Увеличивать его номинал не надо, т.к. при срабатывании УЗ нужно надежно запереть VT1.

И последнее – кажущаяся избыточной емкость конденсатора выходного фильтра С4. В данном случае это безопасно, т.к. максимальный ток коллектора VT1 в 25А обеспечивает его заряд при включении. Но зато данный СНН может в течение 50-70 мс отдать в нагрузку ток до 30А, так что этот простой блок питания пригоден для питания низковольтного электроинструмента: его пусковой ток не превышает такого значения. Нужно только сделать (хотя бы из оргстекла) контактную колодку-башмак с кабелем, надеваемую на пятку рукояти, и пусть «акумыч» отдыхает и бережет ресурс до выезда.

Об охлаждении

Допустим, в данной схеме на выходе 12В при максимуме в 5А. Это всего лишь средняя мощность электролобзика, но, в отличие от дрели или шуруповерта, он берет ее постоянно. На С1 держится около 45В, т.е. на РЭ VT1 остается где-то 33В при токе 5А. Рассеиваемая мощность – более 150Вт, даже более 160, если учесть, что VD1-VD4 тоже надо охлаждать. Отсюда ясно, что любой мощный регулируемый БП должен быть снабжен весьма эффективной системой охлаждения.

Ребристый/игольчатый радиатор на естественной конвекции проблемы не решает: расчет показывает, что нужна рассевающая поверхность от 2000 кв. см. и толщина тела радиатора (пластины, от которой отходят ребра или иглы) от 16 мм. Заполучить столько алюминия в фасонном изделии в собственность для любителя было и остается мечтой в хрустальном замке. Процессорный кулер с обдувом также не годится, он рассчитан на меньшую мощность.

Один из вариантов для домашнего мастера – алюминиевая пластина толщиной от 6 мм и размерами от 150х250 мм с насверленными по радиусам от места установки охлаждаемого элемента в шахматном порядке отверстиями увеличивающегося диаметра. Она же послужит задней стенкой корпуса БП, как на Рис. 4.

Непременное условие эффективности такого охладителя – пусть слабый, но непрерывный ток воздуха сквозь перфорацию снаружи внутрь. Для этого в корпусе (желательно вверху) устанавливают маломощный вытяжной вентилятор. Подойдет компьютерный диаметром от 76 мм, напр. доп. кулер HDD или видеокарты. Его подключают к выводам 2 и 8 DA1, там всегда 12В.

Примечание: вообще-то радикальный способ побороть эту проблему – вторичная обмотка Тр с отводами на 18, 27 и 36В. Первичное напряжение переключают смотря по тому, какой инструмент в работе.

И все-таки ИБП

Описанный БП для мастерской хорош и весьма надежен, но таскать его с собой на выезд тяжко. Вот тут и придется впору компьютерный БП: к большинству его недостатков электроинструмент нечувствителен. Некоторая доработка сводится чаще всего к установке выходного (ближайшего к нагрузке) электролитического конденсатора большой емкости с целью, описанной выше. Рецептов переделки компьютерных БП под электроинструмент (преимущественно шуруповерты, как не очень мощные, но очень полезные) в рунете известно немало, один из способов показан в ролике ниже, для инструмента на 12В.

Видео: БП 12В из компьютерного

С инструментами на 18В еще проще: при той же мощности они потребляют меньший ток. Здесь может пригодится куда более доступное устройство зажигания (балласт) от лампы-экономки на 40 и более Вт; его можно целиком поместить в корпус от негодной АКБ, и снаружи останется только кабель с сетевой вилкой. Как из балласта от сгоревшей экономки сделать блок питания для шуруповерта на 18В, см. следующее видео.

Видео: БП 18В для шуруповерта

Высокий класс

Но вернемся к СНН на ЭП, их возможности далеко еще не исчерпаны. На Рис. 5 – двухполярный мощный блок питания с регулировкой 0-30 В, пригодный для Hi-Fi звуковой аппаратуры и прочих привередливых потребителей. Установка выходного напряжения производится одной ручкой (R8), а симметрия каналов поддерживается автоматически при любой его величине и любом токе нагрузки. Педант-формалист при виде этой схемы, возможно, поседеет на глазах, но у автора такой БП исправно работает уже около 30 лет.

Главным камнем преткновения при его создании было δr = δu/δi, где δu и δi – малые мгновенные приращения напряжения и тока соответственно. Для разработки и наладки высококлассной аппаратуры нужно, чтобы δr не превышало 0,05-0,07 Ом. Попросту, δr определяет способность БП мгновенно реагировать на броски тока потребления.

У СНН на ЭП δr равно таковому ИОН, т.е. стабилитрона, деленному на коэффициент передачи тока β РЭ. Но у мощных транзисторов β на большом коллекторном токе сильно падает, а δr стабилитрона составляет от единиц до десятков Ом. Здесь же, чтобы компенсировать падение напряжения на РЭ и уменьшить температурный дрейф выходного напряжения, пришлось набрать их целую цепочку пополам с диодами: VD8-VD10. Поэтому опорное напряжение с ИОН снимается через дополнительный ЭП на VT1, его β умножается на β РЭ.

Следующая фишка данной конструкции – защита от КЗ. Простейшая, описанная выше, в двухполярную схему никак не вписывается, поэтому задача защиты решена по принципу «против лома нет приема»: защитного модуля как такового нет, но есть избыточность параметров мощных элементов – КТ825 и КТ827 на 25А и КД2997А на 30А. Т2 такой ток дать не способен, а пока он разогреется, успеют сгореть FU1 и/или FU2.

Примечание: делать индикацию перегорания предохранителей на миниатюрных лампах накаливания не обязательно. Просто тогда светодиоды были еще довольно дефицитны, а СМок в загашнике насчитывалось несколько горстей.

Осталось уберечь РЭ от экстратоков разряда фильтра пульсаций С3, С4 при КЗ. Для этого они включены через ограничительные резисторы малого сопротивления. При этом в схеме могут возникнуть пульсации с периодом, равным постоянной времени R(3,4)C(3,4). Их предотвращают С5, С6 меньшей емкости. Их экстратоки для РЭ уже не опасны: заряд стечет быстрее, чем кристаллы мощнющих КТ825/827 разогреются.

Симметрию выхода обеспечивает ОУ DA1. РЭ минусового канала VT2 открывается током через R6. Как только минус выхода по модулю превзойдет плюс, он приоткроет VT3, а тот подзакроет VT2 и абсолютные величины выходных напряжений сравняются. Оперативный контроль за симметрией выхода осуществляется по стрелочному прибору с нулем посередине шкалы P1 (на врезке – его внешний вид), а регулировка при необходимости – R11.

Последняя изюминка – выходной фильтр С9-С12, L1, L2. Такое его построение необходимо для поглощения возможных ВЧ наводок от нагрузки, чтобы не ломать голову: опытный образец глючит или БП «заколбасило». С одними электролитическими конденсаторами, зашунтированными керамикой, тут полной определенности нет, мешает большая собственная индуктивность «электролитов». А дроссели L1, L2 разделяют «отдачу» нагрузки по спектру, и – каждому свое.

Этот БП в отличие от предыдущих требует некоторой наладки:

  1. Подключают нагрузку на 1-2 А при 30В;
  2. R8 ставят на максимум, в крайнее верхнее по схеме положение;
  3. С помощью эталонного вольтметра (сейчас подойдет любой цифровой мультиметр) и R11 выставляют равные по абсолютной величине напряжения каналов. Может быть, если ОУ без возможности балансировки, придется подобрать R10 или R12;
  4. Подстроечником R14 выставляют P1 точно на ноль.

О ремонте БП

БП выходят из строя чаще других электронных устройств: они принимают на себя первый удар бросков сети, им много чего достается и от нагрузки. Даже если вы не намерены делать свой БП, ИБП найдется, кроме компа, в микроволновке, стиралке и др. бытовой технике. Умение диагностировать БП и знание основ электробезопасности даст возможность если не устранить неисправность самому, то уж со знанием дела поторговаться о цене с ремонтниками. Поэтому посмотрим, как производится диагностика и ремонт БП, особенно с ИИН, т.к. свыше 80% отказов приходится на их долю.

Насыщение и сквозняк

Прежде всего – о некоторых эффектах, без понимания которых работать с ИБП нельзя. Первый из них – насыщение ферромагнетиков. Они не способны принять в себя энергии более определенной величины, зависящей от свойств материала. На железе любители с насыщением сталкиваются редко, его можно намагнитить до нескольких Тл (Тесла, единица измерения магнитной индукции). При расчете железных трансформаторов индукцию берут 0,7-1,7 Тл. Ферриты выдерживают только 0,15-0,35 Тл, их петля гистерезиса «прямоугольнее», и работают на повышенных частотах, так что вероятность «заскочить в насыщение» у них на порядки выше.

Если магнитопровод насытился, индукция в нем более не растет и ЭДС вторичных обмоток пропадает, хоть бы первичка уже плавилась (помните школьную физику?). Теперь выключим первичный ток. Магнитное поле в магнитомягких материалах (магнитожесткие – это постоянные магниты) не может существовать стационарно, как электрический заряд или вода в баке. Оно начнет рассеиваться, индукция падать, и во всех обмотках наведется ЭДС противоположной относительно исходной полярности. Этот эффект достаточно широко используется в ИИН.

В отличие от насыщения, сквозной ток в полупроводниковых приборах (попросту – сквозняк) явление безусловно вредное. Он возникает вследствие формирования/рассасывания объемных зарядов в p и n областях; у биполярных транзисторов – преимущественно в базе. Полевые транзисторы и диоды Шоттки от сквозняка практически свободны.

Напр., при подаче/снятии напряжения на диод он, пока заряды не соберутся/рассосутся, проводит ток в обеих направлениях. Именно поэтому потери напряжения на диодах в выпрямителях больше 0,7В: в момент переключения часть заряда фильтрового конденсатора успевает стечь через обмотку. В выпрямителе с параллельным удвоением сквозняк стекает сразу через оба диода.

Сквозняк транзисторов вызывает выброс напряжения на коллекторе, способный испортить прибор или, если подключена нагрузка, сквозным экстратоком повредить ее. Но и без того транзисторный сквозняк увеличивает динамические потери энергии, как и диодный, и уменьшает КПД устройства. Мощные полевые транзисторы ему почти не подвержены, т.к. не накапливают заряд в базе за ее отсутствием, и поэтому переключаются очень быстро и плавно. «Почти», потому что их цепи исток-затвор защищены от обратного напряжения диодами Шоттки, которые чуточку, но сквозят.

Типы ИНН

ИБП ведут свою родословную от блокинг-генератора, поз. 1 на Рис. 6. При включении Uвх VT1 приоткрыт током через Rб, по обмотке Wк течет ток. Мгновенно вырасти до предела он не может (снова вспоминаем школьную физику), в базовой Wб и обмотке нагрузки Wн наводится ЭДС. С Wб она через Сб форсирует отпирание VT1. По Wн ток пока не течет, не пускает VD1.

Когда магнитопровод насытится, токи в Wб и Wн прекращаются. Затем за счет диссипации (рассасывания) энергии индукция падает, в обмотках наводится ЭДС противоположной полярности, и обратное напряжение Wб мгновенно запирает (блокирует) VT1, спасая его от перегрева и теплового пробоя. Поэтому такая схема и названа блокинг-генератором, или просто блокингом. Rк и Ск отсекают ВЧ помехи, которых блокинг дает хоть отбавляй. Теперь с Wн можно снять некоторую полезную мощность, но только через выпрямитель 1П. Эта фаза продолжается, пока Сб не перезарядится полностью или пока не иссякнет запасенная магнитная энергия.

Мощность эта, впрочем, невелика, до 10Вт. Если попробовать взять больше, VT1 сгорит от сильнейшего сквозняка, прежде чем заблокируется. Поскольку Тр насыщается, КПД блокинга никуда не годится: более половины запасенной в магнитопроводе энергии улетает греть иные миры. Правда, за счет того же насыщения блокинг до некоторой степени стабилизирует длительность и амплитуду своих импульсов, а схема его очень проста. Поэтому ИНН на основе блокинга часто применяют в дешевых телефонных зарядках.

Примечание: величина Сб во многом, но не полностью, как пишут в любительских справочниках, определяет период повторения импульсов. Величина его емкости должна быть увязана со свойствами и размерами магнитопровода и быстродействием транзистора.

Блокинг в свое время породил строчную развертку телевизоров с электронно-лучевыми трубками (ЭЛТ), а она – ИНН с демпферным диодом, поз. 2. Здесь УУ по сигналам от Wб и цепи обратной связи ЦОС принудительно открывает/запирает VT1 прежде чем Тр насытится. При запертом VT1 обратный ток Wк замыкается через тот самый демпферный диод VD1. Это рабочая фаза: уже большая, чем в блокинге, часть энергии снимается в нагрузку. Большая потому, что при полном насыщении вся лишняя энергия улетает, а здесь этого лишку мало. Таким путем удается снимать мощность до нескольких десятков Вт. Однако, поскольку УУ не может сработать, пока Тр не подошел к насыщению, транзистор сквозит все-таки сильно, динамические потери велики и КПД схемы оставляет желать много большего.

ИИН с демпфером до сих пор живы в телевизорах и дисплеях с ЭЛТ, поскольку в них ИИН и выход строчной развертки совмещены: мощный транзистор и Тр общие. Это намного сокращает издержки производства. Но, откровенно говоря, ИИН с демпфером принципиально чахлый: транзистор и трансформатор вынуждены все время работать на грани аварии. Инженеры, сумевшие довести эту схему до приемлемой надежности, заслуживают глубочайшего уважения, но совать туда паяльник никому, кроме мастеров, прошедших профессиональную подготовку и обладающих соответствующим опытом, настоятельно не рекомендуется.

Двухтактный ИНН с отдельным трансформатором обратной связи применяется наиболее широко, т.к. обладает наилучшими качественными показателями и надежностью. Впрочем, по части ВЧ помех и он страшно грешит по сравнению с БП «аналоговыми» (с трансформаторами на железе и СНН). В настоящее время эта схема существует во множестве модификаций; мощные биполярные транзисторы в ней почти начисто вытеснены полевыми, управляемыми спец. ИМС, но принцип действия остается неизменным. Его иллюстрирует исходная схема, поз. 3.

Устройство ограничения (УО) ограничивает ток заряда емкостей входного фильтра Сфвх1(2). Их большая величина – непременное условие работы устройства, т.к. за один рабочий цикл из них отбирается малая доля запасенной энергии. Грубо говоря, они играют роль водонапорного бака или воздушного ресивера. При заряде «накоротко» экстраток заряда может превышать 100А на время до 100 мс. Rc1 и Rc2 сопротивлением порядка МОм нужны для симметрирования напряжения фильтра, т.к. малейший разбаланс его плеч недопустим.

Когда Сфвх1(2) зарядятся, устройство запуска УЗ формирует запускающий импульс, открывающий одно из плеч (какое – все равно) инвертора VT1 VT2. По обмотке Wк большого силового трансформатора Тр2 течет ток и магнитная энергия из его сердечника через обмотку Wн почти полностью уходит на выпрямление и в нагрузку.

Небольшая часть энергии Тр2, определяемая величиной Rогр, снимается с обмотки Wос1 и подается на обмотку Wос2 маленького базового трансформатора обратной связи Тр1. Он быстро насыщается, открытое плечо закрывается и за счет диссипации в Тр2 открывается ранее закрытое, как описано для блокинга, и цикл повторяется.

В сущности, двухтактный ИИН – 2 блокинга, «пихающих» друг друга. Поскольку мощный Тр2 не насыщается, сквозняк VT1 VT2 невелик, полностью «тонет» в магнитопроводе Тр2 и в конечном итоге уходит в нагрузку. Поэтому двухтактный ИИН может быть построен на мощность до нескольких кВт.

Хуже, если он окажется в режиме ХХ. Тогда за полуцикл Тр2 успеет насытиться и сильнейший сквозняк сожжет сразу оба VT1 и VT2. Впрочем, сейчас есть в продаже силовые ферриты на индукцию до 0,6 Тл, но они дороги и от случайного перемагничивания деградируют. Разрабатываются ферриты более чем на 1 Тл, но, чтобы ИИН достигли «железной» надежности, надо хотя бы 2,5 Тл.

Методика диагностирования

При поиске неисправностей в «аналоговом» БП, если он «тупо молчит», проверяют сначала предохранители, затем защиту, РЭ и ИОН, если в нем есть транзисторы. Звонятся нормально – идем дальше поэлементно, как описано ниже.

В ИИН, если он «заводится» и тут же «глохнет», проверяют сначала УО. Ток в нем ограничивает мощный резистор малого сопротивления, затем шунтируемый оптотиристором. Если «резик» видимо подгорел, меняют его и оптрон. Прочие элементы УО выходят из строя крайне редко.

Если ИИН «молчит, как рыба об лед», диагностику начинают тоже с УО (может, «резик» совсем сгорел). Затем – УЗ. В дешевых моделях в них используются транзисторы в режиме лавинного пробоя, что далеко не весьма надежно.

Следующий этап, в любых БП – электролиты. Разрушение корпуса и вытекание электролита встречаются далеко не так часто, как пишут в рунете, но потеря емкости случается гораздо чаще, чем выход из строя активных элементов. Проверяют электролитические конденсаторы мультиметром с возможностью измерения емкости. Ниже номинала на 20% и более – опускаем «дохляка» в отстой и ставим новый, хороший.

Затем – активные элементы. Как прозванивать диоды и транзисторы вы, наверное, знаете. Но тут есть 2 каверзы. Первая – если диод Шоттки или стабилитрон звонится тестером с батарейкой на 12В, то прибор может показать пробой, хотя диод вполне исправен. Эти компоненты лучше звонить стрелочным прибором с батарейкой на 1,5-3 В.

Вторая – мощные полевики. Выше (обратили внимание?) сказано, что их И-З защищены диодами. Поэтому мощные полевые транзисторы звонятся вроде бы как исправные биполярные даже негодными, если канал «выгорел» (деградировал) не полностью.

Тут единственный доступный дома способ – замена на заведомо исправные, причем обоих сразу. Если в схеме остался горелый, он немедленно потянет за собой новый исправный. Электронщики шутят, мол, мощные полевики жить друг без друга не могут. Еще проф. шуточка – «замена гей-пары». Это к тому, что транзисторы плеч ИИН должны быть строго однотипными.

Наконец, пленочные и керамические конденсаторы. Для них характерны внутренние обрывы (находятся тем же тестером с проверкой «кондюков») и утечка или пробой под напряжением. Чтобы их «выловить», нужно собрать простенькую схемку по Рис. 7. Пошагово проверка электрических конденсаторов на пробой и утечку осуществляется так:

  • Ставим на тестере, никуда его не подключая, наименьший предел измерения постоянного напряжения (чаще всего – 0,2В или 200мВ), засекаем и записываем собственную погрешность прибора;
  • Включаем предел измерения 20В;
  • Подключаем подозрительный конденсатор в точки 3-4, тестер к 5-6, а на 1-2 подаем постоянное напряжение 24-48 В;
  • Переключаем пределы напряжения мультиметра вниз вплоть до наименьшего;
  • Если на любом тестер показал хоть что-то, кроме 0000.00 (на самом малом – что-то, кроме собственной погрешности), проверяемый конденсатор не годен.

На этом методическая часть диагностики заканчивается и начинается творческая, где все инструкции – собственные знания, опыт и соображение.

Пара импульсников

ИБП статья особая, вследствие их сложности и схемного разнообразия. Здесь мы, для начала, рассмотрим пару образцов на широтно-импульсной модуляции (ШИМ), позволяющей получить наилучшее качество ИБП. Схем на ШИМ в рунете много, но не так страшен ШИМ, как его малюют…

Для светодизайна

Просто зажечь светодиодную ленту можно от любого описанного выше БП, кроме того, что на Рис. 1, выставив требуемое напряжение. Хорошо подойдет СНН с поз. 1 Рис. 3, таких несложно сделать 3, для каналов R, G и B. Но долговечность и стабильность свечения светодиодов зависят не от приложенного к ним напряжения, а от протекающего через них тока. Поэтому хороший блок питания для светодиодной ленты должен включать в себя стабилизатор тока нагрузки; по-технически – источник стабильного тока (ИСТ).

Одна из схем стабилизации тока светоленты, доступная для повторения любителями, приведена на Рис. 8. Собрана она на интегральном таймере 555 (отечественный аналог – К1006ВИ1). Обеспечивает стабильный ток ленты от БП напряжением 9-15 В. Величина стабильного тока определяется по формуле I = 1/(2R6); в данном случае – 0,7А. Мощный транзистор VT3 – обязательно полевой, от сквозняка из-за заряда базы биполярного ШИМ просто не сформируется. Дроссель L1 намотан на ферритовом кольце 2000НМ K20x4x6 жгутом 5хПЭ 0,2 мм. К-во витков – 50. Диоды VD1 ,VD2 – любые кремниевые ВЧ (КД104, КД106); VT1 и VT2 – КТ3107 или аналоги. С КТ361 и т.п. диапазоны входного напряжения и регулировки яркости уменьшатся.

Работает схема так: вначале времязадающая емкость С1 заряжается по цепи R1VD1 и разряжается через VD2R3VT2, открытый, т.е. находящийся в режиме насыщения, через R1R5. Таймер генерирует последовательность импульсов с максимальной частотой; точнее – с минимальной скважностью. Безинерционный ключ VT3 формирует мощные импульсы, а его обвязка VD3C4C3L1 сглаживает их до постоянного тока.

Примечание: скважность серии импульсов есть отношение периода их следования к длительности импульса. Если, напр., длительность импульса 10 мкс, а промежуток между ними 100 мкс, то скважность будет 11.

Ток в нагрузке нарастает, и падение напряжения на R6 приоткрывает VT1, т.е. переводит его из режима отсечки (запирания) в активный (усилительный). Это создает цепь утечки тока базы VT2 R2VT1+Uпит и VT2 также переходит в активный режим. Ток разряда С1 уменьшается, время разряда увеличивается, скважность серии растет и среднее значение тока падает до нормы, заданной R6. В этом и есть суть ШИМ. На минимуме тока, т.е. при максимальной скважности, С1 разряжается по цепи VD2-R4-внутренний ключ таймера.

В оригинальной конструкции возможность оперативной регулировки тока и, соответственно, яркости свечения, не предусмотрена; потенциометров на 0,68 Ом не бывает. Проще всего регулировать яркость, включив после наладки в разрыв между R3 и эмиттером VT2 потенциометр R* на 3,3-10 кОм, выделено коричневым. Передвигая его движок вниз по схеме, увеличим время разряда С4, скважность и уменьшим ток. Другой способ – шунтировать базовый переход VT2, включив потенциометр примерно на 1 МОм в точки а и б (выделено красным), менее предпочтителен, т.к. регулировка получится более глубокой, но грубой и острой.

К сожалению, для налаживания этого полезного не только для светолент ИСТ нужен осциллограф:

  1. Подают на схему минимальное +Uпит.
  2. Подбором R1(импульс) и R3 (пауза) добиваются скважности 2, т.е. длительность импульса должна быть равна длительности паузы. Давать скважность меньше 2 нельзя!
  3. Подают максимальное +Uпит.
  4. Подбором R4 добиваются номинальной величины стабильного тока.

Для зарядки

На Рис. 9 – схема простейшего ИСН с ШИМ, пригодного для зарядки телефона, смартфона, планшета (ноутбук, к сожалению, не потянет) от самодельной солнечной батареи, ветрогенератора, мотоциклетного или автомобильного аккумулятора, магнето фонарика-«жучка» и др. маломощных нестабильных случайных источников электропитания. См. на схеме диапазон входных напряжений, там не ошибка. Этот ИСН и в самом деле способен выдавать на выход напряжение, большее входного. Как и в предыдущем, здесь наличествует эффект перемены полярности выхода относительно входа, это вообще фирменная фишка схем с ШИМ. Будем надеяться, что, прочитав внимательно предыдущее, вы в работе этой крохотульки разберетесь сами.

Попутно о заряде и зарядках

Заряд аккумуляторов весьма сложный и тонкий физико-химический процесс, нарушение которого в разы и десятки раз снижает их ресурс, т.е. к-во циклов заряд-разряд. Зарядное устройство должно по очень малым изменениям напряжения АКБ вычислять, сколько принято энергии и регулировать соответственно ток заряда по определенному закону. Поэтому зарядное устройство отнюдь и отнюдь не БП и заряжать от обычных БП можно только АКБ в устройствах со встроенным контроллером заряда: телефонах, смартфонах, планшетах, отдельных моделях цифровых фотокамер. А зарядка, которая зарядное устройство – предмет отдельного разговора.

    Вопрос-ремонт.ру сказал(а):

    Искрить от выпрямителя будет, но, возможно, ничего страшного. Дело в т. наз. дифференциальном выходном сопротивлении источника питания. У щелочных аккумуляторов оно порядка мОм (миллиом), у кислотных еще меньше. У транса с мостом без сглаживания – десятые и сотые доли Ом, т. е. прим. в 100 – 10 раз больше. А пусковой ток коллекторного мотора постоянного тока может быть больше рабочего раз в 6-7 и даже в 20. У вашего, скорее всего, ближе к последнему – быстро разгоняющиеся моторы компактнее и экономичнее, а огромная перегрузочная способность аккумуляторов позволяет давать движку тока, сколько съест на разгон. Транс с выпрямителем столько мгновенного тока не дадут, и двигатель разгоняется медленнее, чем на то рассчитан, и с большим скольжением якоря. От этого, от большого скольжения, и возникает искра, и в работе потом держится за счет самоиндукции в обмотках.

    Что тут можно посоветовать? Первое: приглядитесь внимательнее – как искрит? Смотреть нужно в работе, под нагрузкой, т.е. во время распиловки.

    Если искорки пляшут в отдельных местах под щетками – ничего страшного. У меня мощная конаковская дрель от рождения так искрит, и хоть бы хны. За 24 года один раз менял щетки, мыл спиртом и полировал коллектор – всего-то. Если вы подключали инструмент на 18 В к выходу 24 В, то небольшое искрение это нормально. Отмотать обмотку или погасить избыток напряжения чем-то вроде сварочного реостата (резистор прим. 0,2 Ом на мощность рассеяния от 200 Вт), чтобы в работе на моторе было номинальное напряжение и, скорее всего, искра уйдет. Если же подключали к 12 В, надеясь, что после выпрямления будет 18, то зря – выпрямленное напряжение под нагрузкой сильно садится. А коллекторному электромотору, между прочим, все равно, постоянным он током питается или переменным.

    Конкретно: возьмите 3-5 м стальной проволоки диаметром 2,5-3 мм. Сверните в спираль диаметром 100-200 мм так, чтобы витки не касались друг друга. Уложите на несгораемую диэлектрическую подкладку. Концы провода зачистите до блеска и сверните «ушами». Лучше всего сразу промазать графитовой смазкой, чтобы не окислялись. Этот реостат включается в разрыв одного из проводов, ведущих к инструменту. Само собой, что контакты должны быть винтовые, затянутые натуго, с шайбами. Подключайте всю цепь к выходу 24 В без выпрямления. Искра ушла, но и мощность на валу упала – реостат нужно уменьшить, переключить один из контактов на 1-2 витка ближе к другому. Все равно искрит, но меньше – реостат маловат, нужно добавить витков. Лучше сразу сделать реостат заведомо большим, чтобы не прикручивать добавочные секции. Хуже, если огонь по всей линии контакта щеток с коллектором или за ними тянутся искровые хвосты. Тогда к выпрямителю нужен сглаживающий фильтр где-то, по вашим данным, от 100 000 мкФ. Недешевое удовольствие. «Фильтр» в данном случае будет накопителем энергии на разгон мотора. Но может и не помочь – если габаритной мощности трансформатора маловато. КПД коллекторных электродвигателей постоянного тока прим. 0,55-0,65, т.е. транс нужен от 800-900 Вт. Т.е., если фильтр поставили, но все равно искрит с огнем под всей щеткой (под обоими, разумеется), то трансформатор не дотягивает. Да, если ставить фильтр, то и диоды моста должны быть на тройной рабочий ток, не то могут вылететь от броска тока заряда при включении в сеть. А инструмент тогда можно будет запускать спустя 5-10 с после включения в сеть, чтобы «банки» успели «накачаться».

    И хуже всего, если хвосты искр от щеток дотягиваются или почти дотягиваются до противоположной щетки. Это называется круговой огонь. Он очень быстро выжигает коллектор до полной негодности. Причин кругового огня может быть несколько. В вашем случае наиболее вероятная – мотор включался на 12 В с выпрямлением. Тогда при токе 30 А электрическая мощность в цепи 360 Вт. Скольжение якоря выходит больше 30 градусов за оборот, а это обязательно сплошной круговой огонь. Не исключено также, что якорь мотора намотан простой (не двойной) волной. Такие электромоторы лучше преодолевают мгновенные перегрузки, но уж пусковой ток у них – мама, не горюй. Точнее заочно не могу сказать, да и ни к чему – своими руками тут вряд ли что исправимо. Тогда, наверное, дешевле и проще будет найти и приобрести новые аккумуляторы. Но сначала все же попробуйте включить движок на немного повышенном напряжении через реостат (см. выше). Почти всегда таким способом удается сбить и сплошной круговой огонь ценой небольшого (до 10-15%) уменьшения мощности на валу.

Евгений сказал(а):

Нужно Больше сокращений. Чтобы весь текст был из сокращений. Похрен что никому не понятно, зато можно не писать одно и то же слово, которое в тексте повторяется ТРИ раза.

Нажимая кнопку «Добавить комментарий», я соглашаюсь с сайта.

Для радиолюбителей, да и вообще современного человека, незаменимой вещью в доме является блок питания (БП), ведь он имеет очень полезную функцию — регулирование напряжения и тока.

При этом мало кто знает, что сделать такой прибор при должном старании и знаниях радиоэлектроники вполне реально своими руками. Любому радиолюбителю, которому нравится возиться дома с электроникой, самодельные лабораторные блоки питания позволят заниматься своим хобби без ограничений. Как раз о том, как своими руками сделать регулируемый тип блок питания расскажет наша статья.

Что нужно знать

Блок питания с регулировкой тока и напряжения в современном доме – необходима вещь. Этот прибор, благодаря своему специальному устройству, может преобразовать напряжение и ток, имеющееся в сети до того уровня, который может потреблять конкретный электронный прибор. Вот примерная схема работы, по которой можно своими руками сделать подобный прибор.

Но готовые БП стоят достаточно дорого, для того чтобы покупать их под конкретные нужды. Поэтому сегодня очень часто преобразователи для напряжения и тока изготавливаются своими руками.

Обратите внимание! Самодельные лабораторные блоки питания могут иметь различные габариты, показатели мощности и прочие характеристики. Все зависит от того, какой именно преобразователь вам нужен и для каких целей.

Профессионалы могут легко сделать мощный блок питания, в то время как новичкам и любителям подойдет для начала простой тип прибора. При этом схема, в зависимости от сложности, может использоваться самая разная.

Что нужно учитывать

Регулируемый блок питания представляет собой универсальный преобразователь, который может использоваться для подключения любой бытовой или вычислительной аппаратуры. Без него ни один домашний прибор не сможет функционировать нормально.
Такой БП состоит из следующих составных частей:

  • трансформатор;
  • преобразователь;
  • индикатор (вольтметр и амперметр).
  • транзисторы и прочие детали, необходимые для создания качественной электрической сети.

Схема, приведенная выше, отражает все компоненты прибора.
Кроме этого, данный тип блока питания должен обладать защитой на сильный и слабый ток. В противном случае любая внештатная ситуация может привести к тому, что преобразователь и подключенный к нему электрический прибор просто перегорит. К этому результату также может привести неправильная спайка компонентов платы, неправильное подключение или монтаж.
Если вы новичок, то для того чтобы сделать регулируемый тип блока питания своими руками лучше выбирать простой вариант сборки. Одним из простых видов преобразователя является 0-15В БП. Он имеет защиту от превышения показателя тока в подключенной нагрузке. Схема для его сборки размещена ниже.

Простая схема сборки

Это, так сказать, универсальный тип сборки. Схема здесь доступна для понимания любому человеку, который хотя бы раз держал в руках паяльник. К преимуществам этой схемы можно отнести следующие моменты:

  • она состоит из простых и доступных деталей, которые можно отыскать либо на радиорынке, либо в специализированных магазинах радиоэлектроники;
  • простой тип сборки и дальнейшей настройки;
  • здесь нижний предел для напряжения составляет 0,05 вольт;
  • двухдиапазонная защита для показателя тока (на 0,05 и 1А);
  • обширный диапазон для выходных напряжений;
  • высокая стабильность в функционировании преобразователя.

Диодный мост

В этой ситуации с помощью трансформатора напряжение будет обеспечиваться в диапазоне на 3В больше, чем имеется максимальное требуемое напряжение для выхода. Из этого следует, что блок питания, способный регулировать напряжение в пределах до 20В, нуждается в трансформаторе минимум на 23 В.

Обратите внимание! Диодный мост следует выбирать, исходя из показателя максимального тока, который будет ограничиваться имеющейся защитой.

Конденсатор для фильтра 4700мкф позволит чувствительной к помехам по питанию техники не давать фон. Для этого потребуется компенсационный стабилизатор, имеющий коэффициент подавления для пульсаций более 1000.
Теперь, когда с основными аспектами сборки мы разобрались, необходимо обратить внимание на требования.

Требования к прибору

Чтобы создать простой, но одновременно качественный и мощный блок питания с возможностью регулировать напряжение и ток своими руками, необходимо знать, какие требования существуют к такому типу преобразователей.
Эти технические требования выглядят так:

  • регулируемый стабилизированный выход на 3–24 В. При этом нагрузка по току должна составлять минимум 2 А;
  • нерегулируемый выход на 12/24 В. При этом предполагается большая нагрузка по току.

Чтобы выполнить первое требование, следует использовать в работе интегральный стабилизатор. Во втором случае выход необходимо сделать уже после диодного моста, так сказать, в обход стабилизатора.

Приступаем к сборке

Трансформатор ТС-150–1

После того как вы определились с требованиями, которым должен отвечать ваш постой блок питания регулируемого типа, а также была выбрана подходящая схема, можно начинать саму сборку. Но прежде всего запасемся нужными нам деталями.
Для сборки вам понадобятся:

  • мощный трансформатор. Например, ТС-150–1. Он способен выдавать напряжение в 12 и 24 В;
  • конденсатор. Можно использовать модель на 10000 мкФ 50 В;
  • микросхема для стабилизатора;
  • обвязки;
  • детали схемы (в нашем случае — схема, которая указана выше).

После этого по схеме собираем своими руками регулируемый блок питания в точном соответствии со всеми рекомендациями. Последовательность действий должна быть соблюдена.

Готовый БП

Для сборки БП используются следующие детали:

  • германиевые транзисторы (в большинстве своем). Если вы захотите заменить их на более современные кремневые элементы, тогда нижний МП37 обязательно должен остаться германиевым. Здесь используются МП36, МП37, МП38 транзисторы;
  • на транзисторе собирается токоограничительный узел. Он обеспечивает отслеживание падения на резисторе напряжения.
  • стабилитрон Д814. Он определяет регулировку максимального выходного напряжения. На себя он забирает половину от выходного напряжения;

Обратите внимание! Поскольку стабилитрон Д814 отбирает ровно половину напряжения на выходе, то его следует выбирать для создания 0-25В выходного напряжения примерно на 13 В.

  • нижний предел в собранном блоке питания имеет показатель напряжения всего 0,05 В. Такой показатель редкость для более сложных схем сборки преобразователя;
  • стрелочные индикаторы отображают показатели тока и напряжения.

Детали для сборки

Для размещения всех деталей необходимо выбрать стальной корпус. Он сможет экранировать трансформатор и плату блока питания. В результате вы избежите ситуации появления различного рода помех для чувствительной аппаратуры.

Получившийся преобразователь можно спокойно использовать для питания любой бытовой аппаратуры, а также экспериментов и проверок, проводимых в домашней лаборатории. Также такой прибор можно применять для оценки работоспособности автомобильного генератора.

Заключение

Используя простые схемы для сборки регулируемого типа блока питания, вы сможете набить руку и в дальнейшем делать своими руками более сложные модели. Не стоит брать на себя непосильный труд, так как в конечном итоге вы можете не получить желаемый результат, а самодельный преобразователь будет работать неэффективно, что негативным образом может сказаться как на самом приборе, так и на функциональности электроаппаратуры, подключенной к нему.
Если же все сделать правильно, то на выходе вы получите отличный блок питания с регулировкой напряжения для своей домашней лаборатории или других бытовых ситуаций.


Выбираем уличный датчик движения для включения света

Мастер, описание устройства которого в первой части, задавшись целью сделать блок питания с регулировкой, не стал усложнять себе дело и просто использовал платы, которые лежали без дела. Второй вариант предполагает использование еще более распространенного материала – к обычному блоку была добавлена регулировка, пожалуй, это очень многообещающее по простоте решение при том, что нужные характеристики не будут потеряны и реализовать задумку можно своими руками даже не самому опытному радиолюбителю. В бонус еще два варианта совсем простых схем со всеми подробными объяснениями для начинающих. Итак, на ваш выбор 4 способа.

Расскажем, как сделать регулируемый блок питания из ненужной платы компьютера. Мастер взял плату компьютера и выпилил блок, питающий оперативку.
Так он выглядит.

Определимся, какие детали нужно взять, какие нет, чтобы отрезать то, что нужно, чтобы на плате были все компоненты блока питания. Обычно импульсный блок для подачи тока на компьютер состоит из микросхемы, шим контроллера, ключевых транзисторов, выходного дросселя и выходного конденсатора, входного конденсатора. На плате еще и зачем-то присутствует входной дроссель. Его тоже оставил. Ключевые транзисторы – может быть два, три. Есть посадочное место по 3 транзистор, но в схеме не используется.

Сама микросхема шим контроллера может выглядеть так. Вот она под лупой.

Может выглядеть как квадратик с маленькими выводами со всех сторон. Это типичный шим контроллер на плате ноутбука.


Так выглядит блок питания импульсный на видеокарте.

Точно также выглядит блок питания для процессора. Видим шим контроллер и несколько каналов питания процессора. 3 транзистора в данном случае. Дроссель и конденсатор. Это один канал.
Три транзистора, дроссель, конденсатор – второй канал. 3 канал. И еще два канала для других целей.
Вы знаете как выглядит шим-контроллер, смотрите под лупой его маркировку, ищите в интернете datasheet, скачиваете pdf файл и смотрите схему, чтобы ничего не напутать.
На схеме видим шим-контроллер, но по краям обозначены, пронумерованы выводы.

Обозначаются транзисторы. Это дроссель. Это конденсатор выходной и конденсатор входной. Входное напряжение в диапазоне от 1,5 до 19 вольт, но напряжение питание шим-контроллера должно быть от 5 вольт до 12 вольт. То есть может получиться, что потребуется отдельный источник питания для питания шим-контроллера. Вся обвязка, резисторы и конденсаторы, не пугайтесь. Это не нужно знать. Всё есть на плате, вы не собираете шим-контроллер, а используете готовый. Нужно знать только 2 резистора – они задают выходное напряжение.

Резисторный делитель. Вся его суть в том, чтобы сигнал с выхода уменьшить примерно до 1 вольта и подать на вход шим-контроллера фидбэк – обратная связь. Если вкратце, то изменяя номинал резисторов, можем регулировать выходное напряжение. В показанном случае вместо резистора фидбэк мастер поставил подстроечный резистор на 10 килоом. Этого оказалось достаточным, чтобы регулировать выходное напряжение от 1 вольта до примерно 12 вольт. К сожалению, не на всех шим-контроллерах это возможно. Например, на шим контроллерах процессоров и видеокарт, чтобы была возможность настраивать напряжение, возможность разгона, выходное напряжение сдается программно по несколькоканальной шине. Менять выходное напряжение такого шим контроллера можно разве только перемычками.

Итак, зная как выглядит шим-контроллер, элементы, которые нужны, уже можем выпиливать блок питания. Но делать это нужно аккуратно, так как вокруг шим-контроллера есть дорожки, которые могут понадобиться. Например, можно видеть – дорожка идёт от базы транзистора к шим контроллеру. Её сложно было сохранить, пришлось аккуратно выпиливать плату.

Используя тестер в режиме прозвонки и ориентируясь на схему, припаял провода. Также пользуясь тестером, нашел 6 вывод шим-контроллера и от него прозвонил резисторы обратной связи. Резистор находился рфб, его выпаял и вместо него от выхода припаял подстроечный резистор на 10 килоом, чтобы регулировать выходное напряжение, также путем про звонки выяснил, что питание шим-контроллера напрямую связано со входной линией питания. Это значит, что не получиться подавать на вход больше 12 вольт, чтобы не сжечь шим-контроллер.

Посмотрим, как блок питания выглядит в работе

Припаял штекер для входного напряжения, индикатор напряжения и выходные провода. Подключаем внешнее питание 12 вольт. Загорается индикатор. Уже был настроен на напряжение 9,2 вольта. Попробуем регулировать блок питания отверткой.


Пришло время заценить, на что способен блок питания. Взял деревянный брусок и самодельный проволочный резистор из нихромовой проволоки. Его сопротивление низкое и вместе с щупами тестера составляет 1,7 Ом. Включаем мультиметр в режим амперметра, подключаем его последовательно к резистору. Смотрите, что происходит – резистор накаляется до красна, напряжение на выходе практически не меняется, а ток составляет около 4 ампер.


Раньше мастер уже делал похожие блоки питания. Один вырезан своими руками из платы ноутбука.

Это так называемое дежурное напряжение. Два источника на 3,3 вольта и 5 вольт. Сделал ему на 3d принтере корпус. Также можете посмотреть статью, где делал похожий регулируемый блок питания, тоже вырезал из платы ноутбука (https://electro-repair.livejournal.com/3645.html). Это тоже шим контроллер питания оперативной памяти.

Как сделать регулирующий БП из обычного, от принтера

Пойдет речь о блоке питания принтера canon, струйный. Они много у кого остаются без дела. Это по сути отдельное устройство, в принтере держится на защелке.
Его характеристики: 24 вольта, 0,7 ампера.

Понадобился блок питания для самодельной дрели. Он как раз подходит по мощности. Но есть один нюанс – если его так подключить, на выходе получим всего лишь 7 вольт. Тройной выход, разъёмчик и получим всего лишь 7 вольт. Как получить 24 вольта?
Как получить 24 вольта, не разбирая блок?
Ну самый простой – замкнуть плюс со средним выходом и получим 24 вольта.
Попробуем сделать. Подключаем блок питания в сеть 220. Берем прибор и пытаемся измерить. Подсоединим и видим на выходе 7 вольт.
У него центральный разъем не задействован. Если возьмем и подсоединим к двум одновременно, напряжение видим 24 вольта. Это самый простой способ сделать так, чтобы данный блок питания не разбирая, выдавал 24 вольта.

Необходим самодельный регулятор, чтобы в некоторых пределах можно было регулировать напряжение. От 10 вольт до максимума. Это сделать легко. Что для этого нужно? Для начала вскрыть сам блок питания. Он обычно проклеен. Как вскрыть его, чтобы не повредить корпус. Не надо ничего колупать, поддевать. Берем деревяшку помассивнее либо есть киянка резиновая. Кладем на твердую поверхность и по шву лупим. Клей отходит. Потом по всем сторонам простучали хорошенько. Чудесным образом клей отходит и все раскрывается. Внутри видим блок питания.


Достанем плату. Такие бп легко переделать на нужное напряжение и можно сделать также регулируемый. С обратной стороны, если перевернем, есть регулируемый стабилитрон tl431. С другой стороны увидим средний контакт идет на базу транзистора q51.

Если подаем напряжение, то данный транзистор открывается и на резистивном делителе появляется 2,5 вольта, которые нужно для работы стабилитрона. И на выходе появляется 24 вольта. Это самый простой вариант. Как его завести можно еще – это выбросить транзистор q51 и поставить перемычку вместо резистора r 57 и всё. Когда будем включать, всегда на выходе непрерывно 24 вольта.

Как сделать регулировку?

Можно изменить напряжение, сделать с него 12 вольт. Но в частности мастеру, это не нужно. Нужно сделать регулируемый. Как сделать? Данный транзистор выбрасываем и вместо резистор 57 на 38 килоома поставим регулируемый. Есть старый советский на 3,3 килоома. Можно поставить от 4,7 до 10, что есть. От данного резистора зависить только минимальное напряжение, до которого он сможет опускать его. 3,3 -сильно низко и не нужно. Двигатели планируется поставить на 24 вольта. И как раз от 10 вольт до 24 – нормально. Кому нужно другое напряжение, можно большого сопротивления подстроечный резистор.
Приступим, будем выпаивать. Берём паяльник, фен. Выпаял транзистор и резистор.

Подпаял переменный резистор и попробуем включить. Подал 220 вольт, видим 7 вольт на нашем приборе и начинаем вращать переменный резистор. Напряжение поднялось до 24 вольт и плавно-плавно вращаем, оно падает – 17-15-14 то есть снижается до 7 вольт. В частности установлено на 3,3 ком. И наша переделка оказалась вполне успешной. То есть для целей от 7 до 24 вольт вполне приемлемая регулировка напряжения.


Такой вариант получился. Поставил переменный резистор. Ручку и получился регулируемый блок питания – вполне удобный.

Видео канала “Технарь”.

Такие блоки питания найти в Китае просто. Наткнулся на интересный магазин, который продает б/у блоки питания от разных принтеров, ноутбуков и нетбуков. Они разбирают и продают сами платы, полностью исправные на разные напряжения и токи. Самый большой плюс – это то, что они разбирают фирменную аппаратуру и все блоки питания качественные, с хорошими деталями, во всех есть фильтры.
Фотографии – разные блоки питания, стоят копейки, практически халява.

Простой блок с регулировкой

Простой вариант самодельного устройства для питания приборов с регулировкой. Схема популярная, она распространена в Интернете и показала свою эффективность. Но есть и ограничения, которые показаны на ролике вместе со всеми инструкциями по изготовлению регулированного блока питания.



Самодельный регулированный блок на одном транзисторе

Какой можно сделать самому самый простой регулированный блок питания? Это получится сделать на микросхеме lm317. Она уже сама с собой представляет почти блок питания. На ней можно изготовить как регулируемый по напряжению блок питания, так и потоку. В этом видео уроке показано устройство с регулировкой напряжения. Мастер нашёл несложную схему. Входное напряжение максимальное 40 вольт. Выходное от 1,2 до 37 вольта. Максимальный выходной ток 1,5 ампер.

Без теплоотвода, без радиатора максимальная мощность может быть всего 1 ватт. А с радиатором 10 ватт. Список радиодеталей.


Приступаем к сборке

Подключим на выход устройства электронную нагрузку. Посмотрим, насколько хорошо держит ток. Выставляем на минимум. 7,7 вольта, 30 миллиампер.

Всё регулируется. Выставим 3 вольта и добавим ток. На блоке питания выставим ограничения только побольше. Переводим тумблер в верхнее положение. Сейчас 0,5 ампера. Микросхема начал разогреваться. Без теплоотвода делать нечего. Нашёл какую-то пластину, ненадолго, но хватит. Попробуем еще раз. Есть просадка. Но блок работает. Регулировка напряжения идёт. Можем вставить этой схеме зачёт.

Видео Radioblogful. Видеоблог паяльщика.

Регулируемый источник напряжения от 5 до 12 вольт

Продолжая наше руководство по преобразованию блока питания ATX в настольный источник питания, одним очень хорошим дополнением к этому является стабилизатор положительного напряжения LM317T.

LM317T – это регулируемый 3-контактный положительный стабилизатор напряжения, способный подавать различные выходы постоянного напряжения, отличные от источника постоянного напряжения +5 или +12 В, или в качестве переменного выходного напряжения от нескольких вольт до некоторого максимального значения, все с токи около 1,5 ампер.

С помощью небольшого количества дополнительных схем, добавленных к выходу блока питания, мы можем получить настольный источник питания, способный работать в диапазоне фиксированных или переменных напряжений, как положительных, так и отрицательных по своей природе. На самом деле это гораздо проще, чем вы думаете, поскольку трансформатор, выпрямление и сглаживание уже были выполнены БП заранее, и все, что нам нужно сделать, это подключить нашу дополнительную цепь к выходу желтого провода +12 Вольт. Но, во-первых, давайте рассмотрим фиксированное выходное напряжение.

Фиксированный источник питания 9В

В стандартном корпусе TO-220 имеется большое разнообразие трехполюсных регуляторов напряжения, при этом наиболее популярным фиксированным стабилизатором напряжения являются положительные регуляторы серии 78xx, которые варьируются от очень распространенного фиксированного стабилизатора напряжения 7805 +5 В до 7824, + 24V фиксированный регулятор напряжения. Существует также серия фиксированных отрицательных регуляторов напряжения серии 79хх, которые создают дополнительное отрицательное напряжение от -5 до -24 вольт, но в этом уроке мы будем использовать только положительные типы 78хх .

Фиксированный 3-контактный регулятор полезен в приложениях, где не требуется регулируемый выход, что делает выходной источник питания простым, но очень гибким, поскольку выходное напряжение зависит только от выбранного регулятора. Их называют 3-контактными регуляторами напряжения, потому что они имеют только три клеммы для подключения, и это соответственно Вход , Общий и Выход .

Входным напряжением для регулятора будет желтый провод + 12 В от блока питания (или отдельного источника питания трансформатора), который подключается между входной и общей клеммами. Стабилизированный +9 вольт берется через выход и общий, как показано.

Схема регулятора напряжения

Итак, предположим, что мы хотим получить выходное напряжение +9 В от нашего настольного блока питания, тогда все, что нам нужно сделать, это подключить регулятор напряжения + 9 В к желтому проводу + 12 В. Поскольку блок питания уже выполнил выпрямление и сглаживание до выхода + 12 В, требуются только дополнительные компоненты: конденсатор на входе и другой на выходе.

Эти дополнительные конденсаторы способствуют стабильности регулятора и могут находиться в диапазоне от 100 до 330 нФ. Дополнительный выходной конденсатор емкостью 100 мкФ помогает сгладить характерные пульсации, обеспечивая хороший переходный процесс. Этот конденсатор большой величины, размещенный на выходе цепи источника питания, обычно называют «сглаживающим конденсатором».

Эти регуляторы серии 78xx выдают максимальный выходной ток около 1,5 А при фиксированных стабилизированных напряжениях 5, 6, 8, 9, 12, 15, 18 и 24 В соответственно. Но что, если мы хотим, чтобы выходное напряжение составляло + 9 В, но имел только регулятор 7805, + 5 В?. Выход + 5 В 7805 относится к клемме «земля, Gnd» или «0 В».

Если бы мы увеличили это напряжение на контакте 2 с 4 В до 4 В, выход также увеличился бы еще на 4 В при условии достаточного входного напряжения. Затем, поместив небольшой 4-вольтный (ближайшее предпочтительное значение 4,3 В) диод Зенера между контактом 2 регулятора и массой, мы можем заставить 7805 5 В стабилизатор генерировать выходное напряжение +9 В, как показано на рисунке.

Увеличение выходного напряжения

Итак, как это работает. Стабилитрон 4,3 В требует обратного тока смещения около 5 мА для поддержания выхода с регулятором, потребляющим около 0,5 мА. Этот полный ток 5,5 мА подается через резистор «R1» с выходного контакта 3.

Таким образом, значение резистора, необходимого для регулятора 7805, будет R = 5 В / 5,5 мА = 910 Ом. Диод обратной связи D1, подключенный через входные и выходные клеммы, предназначен для защиты и предотвращает обратное смещение регулятора, когда входное напряжение питания выключено, а выходное питание остается включенным или активным в течение короткого периода времени из-за большой индуктивности. нагрузка, такая как соленоид или двигатель.

Затем мы можем использовать 3-контактные регуляторы напряжения и подходящий стабилитрон для получения различных фиксированных выходных напряжений от нашего предыдущего источника питания в диапазоне от + 5В до + 12В. Но мы можем улучшить эту конструкцию, заменив стабилизатор постоянного напряжения на регулятор переменного напряжения, такой как LM317T .

Источник переменного напряжения

LM317T – это полностью регулируемый 3-контактный положительный стабилизатор напряжения, способный подавать на 1,5 А выходное напряжение в диапазоне от 1,25 В до чуть более 30 Вольт. Используя соотношение двух сопротивлений, одно из которых является фиксированным значением, а другое – переменным (или оба фиксированным), мы можем установить выходное напряжение на желаемом уровне с соответствующим входным напряжением в диапазоне от 3 до 40 вольт.

Регулятор переменного напряжения LM317T также имеет встроенные функции ограничения тока и термического отключения, что делает его устойчивым к коротким замыканиям и идеально подходит для любого низковольтного или домашнего настольного источника питания.

Выходное напряжение LM317T определяется соотношением двух резисторов обратной связи R1 и R2, которые образуют сеть делителей потенциала на выходной клемме, как показано ниже.

LM317T Регулятор переменного напряжения

Напряжение на резисторе R1 обратной связи является постоянным опорным напряжением 1,25 В, V ref, создаваемым между клеммой «выход» и «регулировка». Ток регулировочной клеммы является постоянным током 100 мкА. Так как опорное напряжение через резистор R1 является постоянным, постоянным током я буду течь через другой резистор R2 , в результате чего выходного напряжения:

Затем любой ток, протекающий через резистор R1, также протекает через резистор R2 (игнорируя очень маленький ток на регулировочной клемме), причем сумма падений напряжения на R1 и R2 равна выходному напряжению Vout . Очевидно, что входное напряжение Vin должно быть как минимум на 2,5 В больше, чем требуемое выходное напряжение для питания регулятора.

Кроме того, LM317T имеет очень хорошее регулирование нагрузки, при условии, что минимальный ток нагрузки превышает 10 мА. Таким образом, чтобы поддерживать постоянное опорное напряжение 1.25V, минимальное значение резистора обратной связи R1 должно быть 1.25V / 10mA = 120 Ом, и это значение может варьироваться от 120 Ом до 1000 Ом с типичными значениями R 1 является приблизительно 220Ω, чтобы 240Ω лет для хорошей стабильности.

Если мы знаем значение требуемого выходного напряжения, Vout и резистор обратной связи R1 , скажем, 240 Ом, то мы можем рассчитать значение резистора R2 из вышеприведенного уравнения. Например, наше исходное выходное напряжение 9 В даст резистивное значение для R2:

R1. ((Vout / 1,25) -1) = 240. ((9 / 1,25) -1) = 1 488 Ом

или 1500 Ом (1 кОм) до ближайшего предпочтительного значения.

Конечно, на практике резисторы R1 и R2 обычно заменяют потенциометром, чтобы генерировать источник переменного напряжения, или несколькими переключенными предварительно установленными сопротивлениями, если требуется несколько фиксированных выходных напряжений.

Но для того, чтобы уменьшить математические вычисления, необходимые для расчета значения резистора R2, каждый раз, когда нам нужно определенное напряжение, мы можем использовать стандартные таблицы сопротивлений, как показано ниже, которые дают нам выходное напряжение регуляторов для различных соотношений резисторов R1 и R2 с использованием значений сопротивления E24 ,

Соотношение сопротивлений R1 к R2

Значение R2 Значение резистора R1
150 180 220 240 270 330 370 390 470
100 2,08 1,94 1,82 1,77 1,71 1,63 1,59 1,57 1,52
120 2,25 2,08 1,93 1,88 1,81 1,70 1,66 1,63 1,57
150 2,50 2,29 2,10 2,03 1,94 1,82 1,76 1,73 1,65
180 2,75 2,50 2,27 2,19 2,08 1,93 1,86 1,83 1,73
220 3,08 2,78 2,50 2,40 2,27 2,08 1,99 1,96 1,84
240 3,25 2,92 2,61 2,50 2,36 2,16 2,06 2,02 1,89
270 3,50 3,13 2,78 2,66 2,50 2,27 2,16 2,12 1,97
330 4,00 3,54 3,13 2,97 2,78 2,50 2,36 2,31 2,13
370 4,33 3,82 3,35 3,18 2,96 2,65 2,50 2,44 2,23
390 4,50 3,96 3,47 3,28 3,06 2,73 2,57 2,50 2,29
470 5,17 4,51 3,92 3,70 3,43 3,03 2,84 2,76 2,50
560 5,92 5,14 4,43 4,17 3,84 3,37 3,14 3,04 2,74
680 6,92 5,97 5,11 4,79 4,40 3,83 3,55 3,43 3,06
820 8,08 6,94 5,91 5,52 5,05 4,36 4,02 3,88 3,43
1000 9,58 8,19 6,93 6,46 5,88 5,04 4,63 4,46 3,91
1200 11,25 9,58 8,07 7,50 6,81 5,80 5,30 5,10 4,44
1500 13,75 11,67 9,77 9,06 8,19 6,93 6,32 6,06 5,24

Изменяя резистор R2 для потенциометра на 2 кОм, мы можем контролировать диапазон выходного напряжения нашего настольного источника питания от примерно 1,25 вольт до максимального выходного напряжения 10,75 (12-1,25) вольт. Тогда наша окончательная измененная схема переменного электропитания показана ниже.

Цепь питания переменного напряжения

Мы можем немного улучшить нашу базовую схему регулятора напряжения, подключив амперметр и вольтметр к выходным клеммам. Эти приборы будут визуально отображать ток и напряжение на выходе регулятора переменного напряжения. При желании в конструкцию также может быть включен быстродействующий предохранитель для обеспечения дополнительной защиты от короткого замыкания, как показано на рисунке.

Недостатки LM317T

Одним из основных недостатков использования LM317T в качестве части цепи питания переменного напряжения для регулирования напряжения является то, что до 2,5 вольт падает или теряется в виде тепла через регулятор. Так, например, если требуемое выходное напряжение должно быть +9 вольт, то входное напряжение должно быть целых 12 вольт или более, если выходное напряжение должно оставаться стабильным в условиях максимальной нагрузки. Это падение напряжения на регуляторе называется «выпадением». Также из-за этого падения напряжения требуется некоторая форма радиатора, чтобы поддерживать регулятор в холодном состоянии.

К счастью, доступны регуляторы переменного напряжения с низким падением напряжения, такие как регулятор низкого напряжения с низким падением напряжения National Semiconductor «LM2941T», который имеет низкое напряжение отключения всего 0,9 В при максимальной нагрузке. Это низкое падение напряжения обходится дорого, так как это устройство способно выдавать только 1,0 ампер с выходом переменного напряжения от 5 до 20 вольт. Однако мы можем использовать это устройство для получения выходного напряжения около 11,1 В, чуть ниже входного напряжения.

Таким образом, чтобы подвести итог, наш настольный источник питания, который мы сделали из старого блока питания ПК в предыдущем учебном пособии, может быть преобразован для обеспечения источника переменного напряжения с помощью LM317T для регулирования напряжения. Подключив вход этого устройства через желтый выходной провод + 12 В блока питания, мы можем иметь фиксированное напряжение + 5 В, + 12 В и переменное выходное напряжение в диапазоне от 2 до 10 вольт при максимальном выходном токе 1,5 А.

!
Сегодня мы с вами соберем мощнейший лабораторный блок питания. На данный момент он является одним из самых мощных на YouTube.

Все началось с постройки водородного генератора. Для запитки пластин автору понадобился мощный блок питания. Покупать готовый блок типа DPS5020 не наш случай, да и бюджет не позволял. Спустя некоторое время схема была найдена. Позже выяснилось, что этот блок питания настолько универсален, что его можно использовать абсолютно везде: в гальванике, электролизе и просто для запитки различных схем. Сразу пробежимся по параметрам. Входное напряжение от 190 до 240 вольт, выходное напряжение - регулируемое от 0 до 35 В. Выходной номинальный ток 25А, пиковый - свыше 30А. Также, блок имеет автоматическое активное охлаждение в виде кулера и ограничения по току, она же защита от короткого замыкания.

Теперь, что касается самого устройства. На фото вы можете видеть силовые элементы.


От одного взгляда на них захватывает дух, но свой рассказ хотелось бы начать совсем не со схем, а непосредственно с того, от чего приходилось отталкиваться, принимая то или иное решение. Итак, в первую очередь, конструкция ограничена корпусом. Это было очень большим препятствием в построении печатных плат и размещении компонентов. Корпус был куплен самый большой, но все равно его размеры для такого количества электроники малы. Второе препятствие - это размер радиатора. Хорошо, что они нашлись в точности, подходящие под корпус.


Как видим радиаторов тут два, но входе построения объединим в один. Помимо радиатора, в корпусе нужно установить силовой трансформатор, шунт и высоковольтные конденсаторы. Они никак не влазили на плату, пришлось их вынести за пределы. Шунт имеет небольшие размеры, его можно положить на дно. Силовой трансформатор был в наличии только таких размеров:


Остальные раскупили. Его габаритная мощность 3 кВт. Это конечно намного больше чем нужно. Теперь можно переходить к рассмотрению схем и печаток. В первую очередь рассмотрим блок-схему устройства, так будет легче ориентироваться.


Состоит она из блока питания, dc-dc преобразователя, системы плавного пуска и различной периферии. Все блоки не зависят друг от друга, например, вместо блока питания можно заказать готовый. Но мы рассмотрим вариант как сделать все своими руками , а вам уже решать, что купить, а что делать также. Стоит отметить, что необходимо установить предохранители между силовыми блоками, так как при выходе из строя одного элемента, он потащит за собой в могилу остальную схему, а это вылетит вам в копеечку.


Предохранители на 25 и 30А в самый раз, так как это номинальный ток, а выдержать они могут на пару ампер больше.
Теперь по порядку о каждом блоке. Блок питания построен на всеми любимой ir2153.


Также в схему добавлен умощненный стабилизатор напряжения для питания микросхемы. Он запитан от вторичной обмотки трансформатора, параметры обмоток рассмотрим при намотке. Все остальное - это стандартная схема блока питания.
Следующий элемент схемы - это плавный пуск.


Установить его необходимо для ограничения тока зарядки конденсаторов, чтобы не спалить диодный мост.
Теперь самая важная часть блока – dc-dc преобразователь.


Его устройство очень сложное, поэтому углубляться в работу не будем, если интересно подробнее узнать про схему, то изучите самостоятельно.

Настало время переходить к печатным платам. Вначале рассмотрим плату блока питания.


На нее не вместились ни конденсаторы, ни трансформатор, поэтому на плате имеются отверстия для их подключения. Размеры фильтрующего конденсатора подбирайте под себя, так как они бывают разных диаметров.

Далее рассмотрим плату преобразователя. Тут тоже можно немного подогнать размещение элементов. Автору пришлось сместить второй выходной конденсатор вверх, так как он не вмещался. Так же можете добавить еще перемычку, это уже на ваше усмотрение.
Теперь переходим к травлению платы.






Думаю, тут нет ничего сложного.
Осталось запаять схемы и можно проводить тесты. В первую очередь запаиваем плату блока питания, но только высоковольтную часть, чтобы проверить не накосячили ли мы во время разводки. Первое включение как всегда через лампу накаливания.


Как видим, при подключении лампочки, она загорелась, а это значит, что схема без ошибок. Отлично, можно установить элементы выходной цепи, а как известно, туда нужен дроссель. Его придется изготовить самостоятельно. В качестве сердечника используем вот такое желтое кольцо от компьютерного блока питания:


С него необходимо удалить штатные обмотки и намотать свою, проводом 0,8 мм сложенным в две жилы, количество витков 18-20.


Заодно можем намотать дросселя для dc-dc преобразователя. Материалом для намотки являются вот такие кольца из порошкового железа.


В отсутствие такого, можно применить тот же материал, что и в первом дросселе. Одной из важных задач является соблюдение одинаковых параметров для обоих дросселей, так как они будут работать в параллели. Провод тот же – 0,8 мм, количество витков 19.
После намотки, проверяем параметры.


Они в принципе совпадают. Далее запаиваем плату dc-dc преобразователя. С этим проблем возникнуть не должно, так как номиналы подписаны. Тут все по классике, сначала пассивные компоненты, потом активные и в последнюю очередь – микросхемы.
Настало время заняться подготовкой радиатора и корпуса. Радиаторы соединим между собой двумя пластинками вот таким образом:


На словах это все хорошо, надо бы заняться делом. Сверлим отверстия под силовые элементы, нарезаем резьбу.




Сам же корпус тоже немного подправим, отломав лишние выступы и перегородки.

Когда все готово, приступаем к креплению деталей на поверхность радиатора, но так как фланцы активных элементов имеют контакт с одним из выводов, то необходимо их изолировать от корпуса подложками и шайбами.

Крепить будем на винты м3, а для лучшей термо передачи воспользуемся не высыхающей термопастой.
Когда разместили на радиаторе все греющиеся части, запаиваем на плату преобразователя ранее не установленные элементы, а также припаиваем провода для резисторов и светодиодов.

Теперь можно тестировать плату. Для этого подадим напряжение от лабораторного блока питания в районе 25-30В. Проведем быстрый тест.


Как видим, при подключении лампы идет регулировка по напряжению, а также ограничения по току. Отлично! И эта плата тоже без косяков.

Тут же можно настроить температуру срабатывания кулера. С помощью подстроечного резистора производим калибровку.
Сам же термистор нужно закрепить на радиаторе. Осталось намотать трансформатор для блока питания на вот таком гигантском сердечнике:


Перед намоткой необходимо рассчитать обмотки. Воспользуемся специальной программой (ссылку на нее найдете в описании под видеороликом автора, пройдя по ссылке «Источник»). В программе указываем размер сердечника, частоту преобразования (в данном случае 40 кГц). Также указываем количество вторичных обмоток и их мощность. Силовая обмотка на 1200 Вт, остальные на 10 Вт. Также нужно указать каким проводом будут мотаться обмотки, жмем кнопку «Рассчитать», тут нет ничего сложного, думаю разберетесь.


Посчитали параметры обмоток и начинаем изготовление. Первичка в один слой, вторичка в два слоя с отводом от середины.


Изолируем все с помощью термоскотча. Тут по сути стандартная намотка импульсника.
Все готово к установке в корпус, осталось разместить периферийные элементы на лицевой стороне таким образом:


Сделать это можно довольно просто, лобзиком и дрелью.

Теперь самая трудная часть - разместить все внутри корпуса. В первую очередь соединяем два радиатора в один и закрепляем его.
Соединение силовых линий будем проводить вот такой 2-ух миллиметровой жилой и проводом сечением 2,5 квадрата.

Также возникли некие проблемы с тем, что радиатор занимает всю заднюю крышку, и там невозможно вывести провод. Поэтому выводим его сбоку.

Блок питания постоянного напряжения 12 вольт состоит из трех основных частей:

  • Понижающий трансформатор с обычного входного переменного напряжения 220 В. На его выходе будет такое же синусоидальное напряжение, только пониженное до примерно 16 вольт по холостому ходу – без нагрузки.
  • Выпрямитель в виде диодного моста. Он «срезает» нижние полусинусоиды и кладет их вверх, то есть получается напряжение, меняющееся от 0 до тех же 16 вольт, но в положительной области.
  • Электролитический конденсатор большой емкости, который сглаживает полусинусоиды напряжения, делая их приближающимися к прямой линии на уровне в 16 вольт. Это сглаживание тем лучше, чем больше емкость конденсатора.

Самое простое, что нужно для получения постоянного напряжения, способного питать приборы, рассчитанные на 12 вольт – лампочки, светодиодные ленты и другое низковольтное оборудование.

Понижающий трансформатор можно взять из старого блока питания компьютера или просто купить в магазине, чтобы не заморачиваться с обмотками и перемотками. Однако чтобы выйти в конечном счете на искомые 12 вольт напряжения при работающей нагрузке, нужно взять трансформатор, понижающий вольт до 16.

Для моста можно взять четыре выпрямительных диода 1N4001, рассчитанных на нужный нам диапазон напряжений или аналогичные.

Конденсатор должен быть емкостью не менее 480 мкФ. Для хорошего качества выходного напряжения можно и больше, 1 000 мкФ или выше, но для питания осветительных приборов это совсем не обязательно. Диапазон рабочих напряжений конденсатора нужен, скажем, вольт до 25.

Компоновка прибора

Если мы хотим сделать приличный прибор, который не стыдно будет потом приделать в качестве постоянного блока питания, допустим, для цепочки светодиодов, нужно начать с трансформатора, платы для монтажа электронных компонентов и коробки, где все это будет закреплено и подключено. При выборе коробки важно учесть, что электрические схемы при работе разогреваются. Поэтому коробку хорошо найти подходящую по размерам и с отверстиями для вентиляции. Можно купить в магазине или взять корпус от блока питания компьютера. Последний вариант может оказаться громоздким, но в нем как упрощение можно оставить уже имеющийся трансформатор, даже вместе с вентилятором охлаждения.


На трансформаторе нас интересует низковольтная обмотка. Если она дает понижение напряжения с 220 В до 16 В – это идеальный случай. Если нет, придется ее перемотать. После перемотки и проверки напряжения на выходе трансформатора его можно закрепить на монтажной плате. И сразу продумать, как монтажная плата будет крепиться внутри коробки. У нее для этого имеются посадочные отверстия.


Дальнейшие действия по монтажу будут проходить на этой монтажной плате, значит, она должна быть достаточной по площади, длине и допускать возможную установку радиаторов на диоды, транзисторы или микросхему, которые должны еще поместиться в выбранную коробку.

Диодный мост собираем на монтажной плате, должен получиться такой ромбик из четырех диодов. Причем левая и правая пары состоят одинаково из диодов, подключенных последовательно, а обе пары параллельны друг другу. Один конец каждого диода маркирован полоской – это обозначен плюс. Сначала паяем диоды в парах друг к другу. Последовательно – это значит плюс первого соединен с минусом второго. Свободные концы пары тоже получатся – плюс и минус. Параллельно соединить пары – значит спаять оба плюса пар и оба минуса. Вот теперь имеем выходные контакты моста – плюс и минус. Или их можно назвать полюсами – верхним и нижним.


Остальные два полюса – левый и правый – используются как входные контакты, на них подается переменное напряжение с вторичной обмотки понижающего трансформатора. А на выходы моста диоды подадут пульсирующее знакопостоянное напряжение.

Если теперь подключить параллельно с выходом моста конденсатор, соблюдая полярность – к плюсу моста – плюс конденсатора, он напряжение начнет сглаживать, причем настолько хорошо, насколько велика у него емкость. 1 000 мкФ будет достаточно, и даже ставят 470 мкФ.

Внимание! Электролитический конденсатор – прибор небезопасный. При неверном подключении, при подаче на него напряжения вне рабочего диапазона или при большом перегреве он может взорваться. При этом разлетается по округе все его внутреннее содержимое – лохмотья корпуса, металлической фольги и брызги электролита. Что весьма опасно.

Ну вот и получился у нас самый простой (если не сказать, примитивный) блок питания для приборов напряжением 12 V DC, то есть постоянного тока.

Проблемы простого блока питания с нагрузкой

Сопротивление, нарисованное на схеме – это эквивалент нагрузки. Нагрузка должна быть такова, чтобы ток, ее питающий, при подаваемом напряжении в 12 В не превысил 1 А. Можно рассчитать мощность нагрузки и сопротивление по формулам.

Откуда сопротивление R = 12 Ом, а мощность P = 12 ватт. Это значит, что если мощность будет больше 12 ватт, а сопротивление меньше 12 Ом, то наша схема начнет работать с перегрузкой, будет сильно греться и быстро сгорит. Решить проблему можно несколькими способами:

  1. Стабилизировать выходное напряжение так, чтобы при изменяющемся сопротивлении нагрузки ток не превышал максимально допустимого значения или при внезапных скачках тока в сети нагрузки – например, в момент включения некоторых приборов – пиковые значения тока срезались до номинала. Такие явления бывают, когда блок питания запитывает радиоэлектронные устройства – радиоприемники, и пр.
  2. Использовать специальные схемы защиты, которые бы отключали блок питания при превышении тока на нагрузке.
  3. Использовать более мощные блоки питания или блоки питания с большим запасом мощности.

На рисунке ниже представлено развитие предыдущей простой схемы включением на выходе микросхемы 12-вольтового стабилизатора LM7812.


Это уже лучше, но максимальный ток в нагрузке такого блока стабилизированного питания по-прежнему не должен превышать 1 А.

Блок питания повышенной мощности

Более мощным блок питания можно сделать, добавив в схему несколько мощных каскадов на транзисторах Дарлингтона типа TIP2955. Один каскад даст прибавку нагрузочного тока в 5 А, шесть составных транзисторов, подключенных параллельно, обеспечат нагрузочный ток в 30 А.

Схема, обладающая такой выходной мощностью, требует соответствующего охлаждения. Транзисторы должны быть обеспечены радиаторами. Возможно, понадобится и дополнительный вентилятор охлаждения. Кроме того, можно защититься еще плавкими предохранителями (на схеме не показано).

На рисунке показано подключение одного составного транзистора Дарлингтона, дающего возможность увеличения выходного тока до 5 ампер. Можно увеличивать и дальше, подключая новые каскады параллельно с указанным.

Внимание! Одним из главных бедствий в электрических цепях является внезапное короткое замыкание в нагрузке. При этом, как правило, возникает ток гигантской силы, который сжигает все на своем пути. В этом случае сложно придумать такой мощный блок питания, который способен это выдержать. Тогда применяют схемы защиты, начиная от плавких предохранителей и кончая сложными схемами с автоматическим отключением на интегральных микросхемах.

Новое на сайте

>

Самое популярное