Домой Безопасность Слушаем радиолюбительские переговоры на компьютере и на телефоне. Широкополосный RTL-SDR приёмник. Слушаем радиолюбительские переговоры на компьютере и на телефоне Регенеративные радиоприемники на транзисторах КП303

Слушаем радиолюбительские переговоры на компьютере и на телефоне. Широкополосный RTL-SDR приёмник. Слушаем радиолюбительские переговоры на компьютере и на телефоне Регенеративные радиоприемники на транзисторах КП303

Это устройство основано на ТВ-тюнере, DDS синтезаторе и дополнительной схеме сопряжения.
Приемник получился настолько сильным, что вы можете его использовать для дальнего приёма!
Этот приемник будет работать с 45 до 860 МГц и размер шага перестройки может быть до 0,01 Гц
Почему бы не использовать этот приемник, как анализатор спектра или приемник спутников NOAA?
Далее, об этом!

Любые вклады в создание и дополнение этой страницы, имеют большое значение!

Маленькое отступление

Зачем делать жизнь сложнее, чем она есть на самом деле?
Моя основная идея в рамках этого проекта была следующей: почему бы при постройке приемника не использовать тюнер? Сказал и сделал. Сердцем этого приемника является тюнер от телевизора или видеомагнитофона. Тюнер имеет цифровое управление, это означает, частоты должны быть запрограммированы через интерфейс I2C.
Не бросайте чтение сейчас! Это совсем не сложно и я приготовил все для вас, так что продолжайте чтение. Наименьшие шаги перестройки тюнера 31.25kHz, 50 кГц или 62.5kHz. Это слишком большой шаг, особенно, если вы занимаетесь приёмом в низкочастотных диапазонах. Чтобы решить этот вопрос я добавил второй смеситель с использованием DDS синтезатора в качестве гетеродина. С DDS вы можете погрузиться в виртуальный мир эфира через 62.5kHz, 50 кГц или 31,25 кГц окно. Наименьший шаг перестройки при таком исполнении может составлять от 0,01 Гц. В большинстве случаев шаг 0,01 Гц будет мал, поэтому в моей программе я буду использовать наименьший шаг 1 Гц.

Первоначальная информация о ТВ-тюнере

Я просто обожаю ТВ-тюнеры, и поэтому сейчас я объясню вам принцип их работы.
Я писал ранее о тюнерах, но невозможно написать много о них, и вот поэтому, давайте повторим:
Как выглядит тюнер?
Вскройте видеомагнитофон или телевизор и найдите блестящую коробку methalic. Если вы нашли её, можете открыть, и внутри неё увидите сотни жучков. Это компоненты поверхностного монтажа.
Тюнера основны на пониженном преобразовании частоты. ВЧ сигнал конвертируется вниз на частоту ПЧ 34-38.9MHz (европейский стандарт). Некоторые новые тюнеры имеет внутренний демодулятор и выходных сигналов видео и аудио.
Частота на выходе, которую вам нужна, может быть установлена двумя способами: аналоговым или цифровым.

Входные полосы приёма:

ОНЧ-48-180МГц
УКВ 160-470MHz
UHF430-860MHz

Аналоговый тюнеры используют входное напряжение 0-28В для управления VCO (ГУН, генератор, управляемый напряжением), и есть 3 контака для
выбора диапазона (см. рис). Перестройка напряжением также управляет частотой резонанса входного фильтра тюнера. Сигнал со вход ВЧ смешивается с сигналом VCO и на выходе образуется конечный продукт преобразования (ПЧ) 38.9MHz.
Недостатком аналогового тюнера является то, что трудно получить стабильное напряжение настройки VCO и определить текущую частоту настройки.

Цифровой тюнер работает по-другому. Он использет PLL (синтезатор частоты) для установки частоты. Синтезатор может быть запрограммирован на любую частоту в диапазоне от 45 до 860MHz. Синтезатор частоты тюнера сравнивает с запрограммированной частотой частоту VCO. Схема изменяет настройки напряжения до тех пор, пока частоты VCO и образцовая частота не сравняются по фазе.
Полосы и частота программируются через интерфейс I2C. Цифровой тюнер очень точно придерживается заданной частоты и является очень стабильным. Единственный недостаток такого типа тюнера то, что вам нужна цифровая логика для программирования тюнера. Я обычно использую ПИК контроллер для управления моими цифровми тюнерами.

Давайте взглянем на некоторые тюнеры: UV916 и noname тюнер

В большинстве случаев вам будет трудно найти этикетку с обозначением на тюнере. Я не знаю, почему настолько отвратительно производители относятся к маркировке тюнеров. Я собрал более 50 тюнеров от различных телевизоров и видеомагнитофонов, и мне удалось найти всего лишь около 10 с правильным лейблом. Не беспокойтесь! Даже если вам не удаётся найти никакой информации о тюнере, можно открыть его и определить по схеме. Чаще всего вы найдете PLL синтезатор и один демодулятор / смеситель. Попробуйте найти даташит на PLL, и вы поймете, как программировать тюнер.
Один из распространенных тюнеров UV916. На фото UV916H / UV916 E-тюнер. Я помогу вам идентифицировать его.

Этот тюнер основан на двух микросхемах. TDA5630 "9 V VHF, hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners" и TSA5512 "1.3 GHz Bidirectional I2C-buscontrolled synthesizer".
TSA5512 программируется на нужную частоту и установает напряжение Vtuning PLL, расположенном в схеме TDA5630.
Шаг перестройки этого тюнера фиксированный, 62.5kHz. Этот тюнер имеет 9 выводов и кожух, соединённый с массой.

AGC = АРУ автоматическая регулировка усиления. Напряжение от 0 до 12V будет управлять коэффициентом усиления предусилителя.
+12V = источник питания для предусилителя и цепи TDA5630.
+33V = источник питания настроечного напряжения PLL.
+5V = источник питания PLL синтезатора.
SCL = I2C clock PLL synthesizer.
SDA = I2C data to the PLL синтезатора.
AS = Выбор адреса для тюнера (используются с MA1 и MA0 см. стр. 8 даташита)
IF = выход ПЧ
IF = выход ПЧ

Довольно сложная задача в тюнерах - это установить желаемый диапазон. Диапазоны выбираются программированим регистров порта Р0...P7 в схеме TSA5512. Диапазон UV916 соответствуют следующей таблице:

BAND P7 P6 P5 P4 P3 P2 P1 P0
LOW BAND (60h) 0 1 1 0 0 X X X
MID BAND (50h) 0 1 0 1 0 X X X
HIGH BAND (30h) 0 0 1 1 0 X X X

Noname тюнер

Теперь, давайте попробуем идентифецировать комплектующие безымянного тюнера, имеющегося в моём распоряжении.
После снятия крышки мы увидим две схемы: TDA 5630, представляющий из себя смеситель и ГУН, и TSA5522, синтезатор PLL. Заглянув в даташит, мы сможем найти исчерпывающую информацию. Руководствуясь даташитом TSA5522 и следуя дорожкам на плате, мы сможем легко найти входы SCL и SDA. Мы так же можем найти вывод P6, являющийся входом 5-уровнего АЦП преобразователя, который может быть использован для автоматической подстройки частоты (АПЧ). Мы применим АПЧ (автоподстройку частоты). В большинстве случаев вы можете не использовать этот вход и оставить его в свободно подвешенном состоянии. Вы так же можете найти вход, обозначенный AS. Путём выбора определённого напряжения можно выбрать один из трёх синтезаторов, могущих присутствовать в системе. В большинстве случаев вы будете использовать один тюнер, так что вы можете оставить этот вход так же свободно подвешенным.
Схема синтезатора частоты питается напряжением +5В, потребляя при этом небольшой ток. Просмотрев 13-ю страницу даташита, вы можете понять, как работает синтезатор. PLL использует напряжение +33В на входе CP в качестве напряжения настройки варикапов. Следуя дорожкам на плате, мне удалось найти вход 33В DC.

Посмотрев в даташит микросхемы TDA5630, мы можем найти то, что она питается напряжением +9В, и, руководствуясь этим уровнем, находим соответствующий вывод блока. Последний из выводов блока не указан в даташите, он называется AGC (automatic Gain Control, Автоматическая регулировка усиления, АРУ). С помощью этого вывода можно контролировать предварительный усилитель ВЧ, меняя коэффициент его усиления. Хорошим решением является установка уровня на этом выводе, равном половине напряжения питания системы, т.е. 6В, с помощью делителя из двух резисторов. Чаще всего вы можете найти вывод АРУ на первом выводек, близжайшем ко входу ВЧ.
Теперь нам известно назначение всех выводов этого непонятного тюера. Почитайте даташиты, чтобы понять логику работы PLL TSA5522.

Не пугайтесь большому количеству фильтров и смесителей, в течении нескольких минут вы поймёте, что к чему.
Тюнер относится к классу цифровых, чья частота контролируется путём подачи управляющего сигнала на шину I2C. Наименьший шаг перестройки тюнера 62,5 кГц.
Для облегчения представления о принципах работы посмотрите на рисунок. В вашем распоряжении 2 ручки. Левая (красная) управляет перестройкой тюнера с шагом 62,5 кГц. Правая управляет DDS, который может перестраиваться с шагом 0,01 Гц в диапазоне от 0 до 62.49999 кГц. В примере я определил шаг перестройки этого генгератора величиной 1 Гц. Формула ниже показывает вам, как вы можете с помощью этих двух переключателей любую желаемую частоту. В действительности, частота DDS вовсе не лежит в диапазоне от 0 до 62.49999 кГц, её значения составляют от 5.01375 МГц до 5.07625 МГц).

С помощью двух этих составляющих (тюнер и DDS), вы можете просканировать весь диапазон 45-860 МГц с шагом 0,011 Гц! Для понимания принципов работы тюнера я описываю каждый блок. Выход IF (intermediate Frequency, ПЧ, промежуточная частота) установлен в значение 37 МГц, что является европейским стандартом. Фильтр ПАВ (SAW) обрезает внеполосные продукты преобразования. Сигнал, проходя через первый смеситель, смешивается с фикситрованной частотой квацевого генератора 42.5 МГц.
Продуктом преобразования первого смесителя является частота 5,5 МГц. Я использую стандартный пьезокерамический фильтр на 5,5, обрезающий внеполосные сигналы. Фильтр должен иметь полосу пропускания 100 КГц, что является характерным для телевизоров и видеомагнитофонов.
Прежде чем рассмотреть 2-й смеситель, обратите внимание на оконечную часть схемы, где находится детектор. Детектор работает на частоте 455 кГц, а перед ним стоит пьезокерамический фильтр на эту частоту. Если мы установим частоту DDS равной 5.5 МГц - 455 кГц = 5.045 МГц, мы получим именно ту установдленную частоту приёма, что нам нужна. Помните, я говорил вам о наименьшем шаге перестройки тюнера 62.5 кГц? У UV916 шаг перестройки составляет 62.5 кГц!
Теперь, если мы будем менят частоту DDS в пределах ±31,25 кГц, мы сможем реализовать плавную перестройку. DDS при этом будет перестраиваться в пределах 5.045 МГц ±31.25 кГц.

Условия работоспособности данной схемы

Она будет работать идеально, если полоса пропускания 5.5 МГц керамического фильтра перед вторым смесителем шире, чем 62.5 кГц.
Если полоса пропускания меньше, чем 62.5 кГц вы столкнётесь с проблемами. В моей тестовой конструкции (фото ниже), я обнаружил, что 3-выводный фильтр имеет полосу пропускания 600 кГц, а 4-выводный около 350 кГц, что, скорее всего, не создаст лишних проблем. Это не очень хорошо в плане фильтрации внеполосных сигналов, т.к. меньшая полоса пропускания обеспечит лучшую чувствительность и изберательность.

После всего этого вы можете подумать, что конструкция содержит множество миксеров, фильтров и прочего дерьма... Не волнуйтесь!
Если вы примените широко используемую микросхему MC13135/13136, вы можете уже только с помощью её реализовать множествво блоков данной схемы. Она содержит один кварцевый генератор, два смесителя, ЧМ модулятор, ВЧ выход и множество других ценных приблуд. Пьезокерамику и контур на 455 кГц вы можете найти в дешёвых приёмниках на микросхемах. ПАВ фильтр, пьезокерамический фильтр на 5,5 МГц и тюнер вы можете найти в сломанных видеомагнитофонах и телевизорах. Так же я думаю, их можно найти и в прекрасно работающей технике. Почему бы не выковырять их из идеально работающего широкоэкранного телевизора?

9-звенный фильтр DDS

Я подробно опишу в нескольких разделах схему Супер-сканера для облегчения восприятия.

Блок тюнера

Для этой конструкции я использовал широко распространённый тюнер UV916. Напряжение AGC (АРУ) выставляется равным +6В с помощью двух резисторов.
Для питания устройства я использовал три различных источника питания (+5, +12 и +33 В). Шина I2C (SCL, SDA) соединена с выводами RB3 и RB4 PIC контроллера.
P3 остаётся в подвешенном состоянии, а выход ПЧ 37.0 МГц (IF) соединяется со входом ПАВ фильтра. У фильтра два ввхода и два выхода. Выходы соединяются с трактом усилителя ПЧ. Границы полосы пропускания состовляют 34-38.9 МГц. Это помогает избавиться от приёма по зеркальному каналу.

Блок DDS

DDS синхронизируется тактовой чатотой 50 МГц с помощью кварцевого резонатора. С PIC контроллера сигналы управления через RB5, RB6 и RB7 поступают на DDS.
Дроссели L1 и L2 фильтруют напряжение источника питания и разделяют аналоговую и цифровую части.
Выход DDS нагружен сопротивлением 300 Ом, и соединён с 9-звенным П-фильтром. Фильтр устраняет гармоники и внеполосные излучения, генерируемые цифровой частью схемы.
После фильтра получается красивый гармонический сигнал 5.045 МГц.

Одна из сложностей сборки данной конструкции в том, что из-за наличия мелких комплектующих вы должны применять острозаточенный паяльник. Будьте спокойны и не переживайте, паяя эту малютку...

Блок ПЧ

Собран на MC33165. Выводы 1 и 2 гетеродин. Я использовал схему с кварцевым резонатором. На ножке 3 обнаруживается выход буферного каскада гетеродина. Сигнал, отфильтрованный ПАВ, через вывод 22 поступает на вход первого смесителя. Продукты преобразования снимаются с 20-й ноги. Пьезокерамический фильтр на 5,5 МГц обрезают все сигналы, отстоящие в стороне на +/- 100 кГц. Сигнал приходит на вход второго смесителя, где смешивается с сигналом DDS, приходящий на 6-ю ногу. Продукты преобразования через фильтр 455 кГц проходят в ЧМ детектор.
К квадратурному детектору через вывод 13 подключается катушка. С выводов 15-16 вы можете снять уровень напряжения, пропорциональный уровню входного сигнала в децибелах. При использовании приёмника в качестве анализатора спектра можно соединить данный выход со входом Y осциллографа. Х вход соединяется с напряжением настройки по частоте. Вывод 17 звуковой выход. Сигнал там имеет величину 50-150 мВ, что довольно мало. Я усилил его простым усилителем, показанным внизу схемы.

Интерфейс RS232

Теперь я объясню, как работает схема совместно с компьютером. Вы не обязаны вникать в это, если у вас нет на то желания, но некоторым, возможно, захочется написать программу, управляющую приёмником. Поэтому я позаботился обо всём!
Я так сконструировал данный приёмник, чтобы его настройкой можно было полностью управлять с компьютера. Таким образом, вы можете убедиться в работоспособности устройства ещё до подключения к нему кнопок, дисплея и т.д. В конце концов, вы можете сделать портативный автономный аппарат, но прежде всё-таки давайте убедимся в полной его работоспособности, кратчайший путь к чему - подключение его к компьютеру и проверка правильности подсчёта и установки требуемой частоты приёма. Для того, чтобы соединить устройство с компьютером, потребовалось ввести в схему RS интерфейс, собранный на микросхеме MAX232, которая преобразует TTL уровни в стандарт COM порта. Я выбрал скорость обмена 19200, с контролем битов четности, 8 бит и 1 стоп-битом (19200, е, 8,1). Теперь давайте рассмотрим протокол.

Программное обеспечение, написанное мной, унифицированное. Это означает, что вы можете использовать много различных тюнеров с этим программным обеспечением. Прежде всего, нужно подать требуемые уровни на 9 регистров. Adressbyte назначает tuneradress для I2C. Dividerbyte 1 и 2 служат для установки частоты тюнера.
Controlbyte служит для контроля токов PLL и прочего, Portbytes выбирает нужный диапазон приёма. В документе TSA5512.pdf можжно найти принцип управления регистрами тюнера. Функция, выполняемая программой, является вычисление значений этих 9 регистров и отправка их в PIC контроллер. PIC принимает информацию, транслирует её в протокол шины I2C и отправляет на тюнер и DDS. Вам не обязательно понимать, что же всё-таки делает PIC контроллер, но для написания программы придётся всё же в этом разобраться.

Для завершения настройки частоты приемника, вам нужно отправить 9 байт в PIC-контроллер. 5 первых, служат для управления тюнером (желтый цвет). 4 последующих байта (зеленый цвет) установливают частоту DDS. Вы можете прочитать более подробную информацию о DDS по этой ссылке . В приведенной выше таблице показно 9 регистров. Когда вся информация отправлена с компьютера в контроллер, убедитесь, что частоты тюнера и DDS установлены правильно.

Программа под Windows

Я написал простенькую программу, интерфейс которой вы можете видеть на скриншоте.

Давайте я расскажу вам о назначении кнопок и окон.

Receiving Frequency

Частота приёма, здесь вы можете установить частоту, на которой хотите вести приём. Введите значение в зеленое окошко и нажмите Set Freq. Вы также можете установить размер шага для сканирования вверх / вниз. Шаг вводится так же, как частота.

Comport

Здесь можно установить нужный COM-порт для обмена данными.

Tuner register settings

Здесь можно установить значения регистров. Dividerbyte 1 и Dividerbyte 2 рассчитываются автоматически в зависимости от принимаемой частоты в окошке Receiving Frequency. Adressbyte, Controlbyte и Ports byte можно в любой момент изменить вручную. При каждом изменении значения программа автоматически отправляет данные на тюнер.
Помните, при изменении частоты свыше 150 МГц и 450 МГц нужно вручную переключить диапазон Ports byte, т.к. программа не умеет делать этого автоматически.

DDS Setting

Чтобы установить частоту DDS, необходимо знать Reference frequency данного DDS. Выходная частота рассчитывается на основании Reference frequency, введёной ранее. Вы также увидите 32 бит DDS, отображённые в виде 4 байт.

Buffer

Буфер отображает 9 байт, отправляемые на PIC. Принажатии кнопки Send содержимое буфера отправляется на PIC через RS232 сейчас же. Так же это происходит при любом изменении любого из значений.

Давайте рассмотрим в цифрах то, что описано выше:

IF = Xtal - DDS - 455kHz => 42.5e6 - 5.02e6 - 455e3 = 37.025.000 Hz
Tuner VCO = 62500 * tuner divider => 62500 * 2274 =142.125.000 Hz
RF receive = Tuner VCO - IF => 142.125e6 -37.025.e6 = 105.1 MHz

Глядите, как здорово!
Ну, вот и всё о программе.

Загрузить прошивку PIC16F84 (INHX8M format)

s_tuner.zip Super tuner program (the hex file is zipped!).

Загрузить даташиты

TSA5512_CNV_3.pdf Datasheets for TSA5512_CNV_3.pdf
SAW filter information and PDF download SAW filter information and PDF download
I 2 C information I 2 C Bus Technical Overview and FAQ

Моё исполнение Супер сканера.

Хочу, чтобы вы посмотрели, как я всё воплотил в железе.
Ниже фото того, что я спаял поздним вечером накануне.

Пайка выполнена комбинацией обычных элементов и поверхностного монтажа.
Я добавил в схему преобразователь для получения настроечного напряжения 33 В.
Так же я добавил два (чёрный и жёлтый) пьезокерамических резонатора на 455 кГц и реле их переключения. Так же я добавил реле для переключения усиления сигнала с выхода детектора. Это осуществляется простой коммутацией резисторов, включенных в параллель катушке квадратурного детектора. Причиной, побудившей меня сделать данные усовершенствования, является то, что я хотел принимать как широкополосные, так узкополосные сигналы с наилучшим качеством.

Изготовление и проверка схемы

Не подключайте тракт ПЧ до тех пор, пока не отладите все остальные узлы. Я рекомендую вам в первую очередь запустить DDS. Когда вы получите хороший сигнал с DDS нужной чатоты, возьмитесь за тюненре. На схеме найдите тестовую точку TP. Подключите к ней вольтметр постоянного тока и замерьте напряжение. Оно должно меняться при изменении частоты настройки. Это лёгкий путь убедиться в том, что тюнер работает нормально. Теперь включите блок ПЧ и проверьте частоту кварцевого генератора. Надеюсь, что у вас всё благополучно заработало.

Заключительные слова

Этот проект послуужит вам отправной точкой для создания ваших проектов тюнеров. Этот проект может вырасти почти до библейских масштабов. На рынке представлено так много различных клавиатур и дисплеев, что я решил опустить данную часть, и просто управлять ресивером с компьютера.

Вы можете написать мне, если что-то неясно.
Я желаю вам удачи в ваших проектах, и спасибо за посещение моей страницы.

Как вы знаете, я интересуюсь тематикой раций, и даже иногда делаю обзоры на некоторые свои девайсы.
Вот и сегодня я решил рассказать про довольно интересную штуку. Приёмник сигналов RTL-SDR построенный на базе R820T 8232.
Также расскажу, как настроить этот приёмник для работы на компьютере и на android телефоне\планшете.
Итак, про SDR приёмники уже есть несколько обзоров. Поэтому я не буду подробно рассказывать, что это.
Скажу лишь что можно купить более дешевый вариант приёмника, и доделать его паяльником.
Типа такого:


Можно купить kit-набор. Типа такого:


()
И собрать приёмник, потратив на это несколько вечеров, заодно прокачав скилл паяльщика.
Или же сделать как я: купить уже готовое к приёму всего нужного изделие, которое можно использовать без танцев с бубном. Разница в цене не сильно большая, поэтому я купил готовый приёмник, с дополнительной платой, всеми нужными перемычками в нужных местах, и даже двумя выходами под антенны.
Данный конкретный приемник может принимать сигналы и охватывать все ВЧ любительских диапазонов:
охватывает УКВ и увч 24-1766 МГц
до 3.2 М частота Дискретизации (~ 2.8 МГц стабильный)
приемник режимов, МСЧ, FM, ПРОИЗВОДСТВО USB, LSB и CW
Что это значит? А это значит, что мы можем слушать передачи на следующих диапазонах:
13-15Мгц это дальние вещалки на подобии голоса америки.
15-28МГц можно услышать любительскую радиосвязь.
27.135МГц это канал дальнобойщиков (удобно слушать в дальних поездках).
30-50МГц может находиться скорая помощь.
87.5-108МГц это обычное фм радио.
109-500МГц самое интересное)
108-136МГц это авиадиапазон (тут разговаривают пилоты, не без шуток и приколов)
137-138МГц это диапазон спутников NOAA (погода со спутника в низком разрешении)
144МГц опять же радиолюбители
150МГц это жд диапазон.
433МГц тоже радиолюбители, рации-болтушки, брелки сигналок, шлагбаумов и прочего эфирного мусора
446МГц тоже болтушки
дальше уже зависит от города, кстати, полиция тоже где-то тут) но где- не скажу)
~900МГц сотовая связь.

Еще больше инфы можно почерпнуть на сайте
Теперь непосредственно про приёмник.
Приёмник был заказан на банггуде. (там он был в наличии, на момент покупки. И цена была хорошей.) Заказывал 2 приёмника:


Доставка заняла 30 дней. На почте получил посылку с двумя коробками. Одна коробка с приёмником пока лежит до лучших времен (позже поставлю в машину) а первая используется для тестирования и настройки.
Приёмник приходит в обычной коробке. Которая еще и малость пострадала:


Внутри находятся приёмник, антенна, mini-usb кабель:


Больше по сути ничего и не надо.
Подробности.
Кабель:




Кабель самый обычный mini-usb. Я его кстати даже не стал использовать. Так как у меня есть свой, более длинный и качественный.
Антенна:




Имеет магнитную площадку. Магнит довольно крепкий. Хорошо держится на вертикальных металлических поверхностях.


Сам приёмник:
Ничем не примечательная коробочка.




Имеет размеры 90*50*22мм:





С одной стороны, имеются разъемы для подключения двух антенн:


С другой стороны, разъём mini-usb для подключения к компьютеру и светодиод индикации питания:


Если не знать наверняка, даже и не понять, что это за устройство такое. Тем более что никаких опознавательных надписей на коробке нету. (да и они не нужны )
Пара фоток в интерьере, вместе с рацией wouxun:




В комплекте идёт только 1 антенна, несмотря на наличие двух разъёмов для разных частот.
Для работы на частотах 100khz-30MHz нужно докупать вторую антенну. При условии, что вы хотите чтото слушать в этом диапазоне.
Перед тем как использовать, я решил разобрать приёмник. Причина проста. Внутри что-то как-то странно болталось. (болтанка присутствует на обоих экземплярах приобретенных мной приемников)


Весь процесс разбора состоит из выкручивания 4 винтиков:








Даже на фото видно, что распаяно всё аккуратно. Следов флюса или прочего криминала не видно.
Видно, что это DVB приёмник распаянный на плате. Основные чипы R820T и 8232:


Больше рассказать ничего не могу. Так как не силён в схемотехнике. На фото всё итак видно.
Теперь про то что гремело внутри. Это сама плата. Она немного меньше пазов корпуса и немного короче. Потому и болталась внутри. Я этот вопрос решил просто. Приклеил вспененный 2-сторонний скотч внутри корпуса, и вставил плату на место:


Всё закрутилось плотненько. Люфт и болтание ушли.
Теперь расскажу про настройку и тестирование:
Для работы с приёмником на Windows комплютере, нам нужно использовать программу sdrsharp

Для установки правильных драйверов, нужно запустить программу zadig.exe
Если в сборке с шарпом у вас ее нет,
Запускаем, выбираем options - list all devices
Выбираем пункт Builk-In, Interface (interface 0) и нажимаем кнопку Reinstall Driver:


После этого нужные драйвера будут установлены в системе, и можно запускать программу SDRSharp.
Тут всё просто. В настройках выбираем нужный порт, и нажимаем кнопку старт:




Частоты можно вводить как вручную, так и использовать различные плагины для сканирования.
(работа с программой потянет на отдельную статью, уж очень много в ней возможностей. Поэтому я показываю поверхностно, а заинтересованные могут уже найти в интернете подробности)
Для чего нужен подобный приёмник?
Несмотря на комментарии про всякие злодеяния, и про то что посодють, этот приёмник на самом деле вполне легален. И использовать его можно в легальных целях. Да и к тому же слушать эфир у нас НЕ ЗАПРЕЩАЕТСЯ. А передать что-то в эфир с помощью этого приёмника невозможно. Поэтому с помощью приёмника мы можем послушать радио. Да, обычное радио. Вдруг у вас нет ни одного устройства умеющего принимать сигналы местных радиостанций, а радио послушать ужасть как хочется-приёмник поможет.
Еще с помощью приёмника можно послушать радиолюбителей, вещающих на частотах 15-28МГц
Но нужна более мощная антенна. Та что идёт в комплекте позволит принимать сигнал только находясь недалеко от источника этого самого сигнала.
Еще с помощью приёмника можно проверять рации. Классическая ситуация: принесли старую рацию без дисплея. Рабочую, но неизвестно на какой частоте. Можно данный приёмник использовать для выявления. (конечно есть отдельные приборы для замера частоты и мощности, но если есть приёмник, можно обойтись им)
Ну и, например, поехали мы в дальнюю дорогу. Своим ходом на машине. Почему бы нам не настроить приёмник на частоту дальнобойщиков СВ (27.135 МГц ), чтобы послушать переговоры? Чтобы знать, что творится на дороге? Где засада ГАИ, где аварии, где объезд и т.д.
Кстати именно для прослушивания CВ диапазона не обязательно подключать приёмник к ноутбуку. Можно использовать телефон на android. И не только для этого диапазона.
Я подключил приёмник к своему Xiaomi Mi5 через копеечный OTG-адаптер. Тут настройка еще проще чем на компьютере:
Идём на 4PDA.ru и качаем программу
Вместе с программой качаем Rtl-sdr driver 3.06 и ключ для получения полного функционала. (можно конечно купить ключ на маркете, но я старый пират, которому претит платить за софт )
Устанавливаем на телефон:

Скриншоты с приложения:









Как видим всё прекрасно работает, и также позволяет слушать эфир.


Я проверял этот приёмник с моими рациями Baofeng, Wouxun, WLN. Всё прекрасно ловится.
Также при помощи сканера смог найти несколько частот, на которых шли разговоры. Что подтверждает работоспособность приёмника.
Приёмник у меня в основном для хобби, но есть интерес послушать коротковолновиков из других стран, поэтому сейчас выбираю антенну к этому приёмнику (буду благодарен если в комментариях предложите свои варианты)
Заключение:
Этот приёмник отличный вариант для людей, интересующихся радио. Он позволяет узнать много нового, а также слушать эфир без покупки дорогого оборудования.
Отговаривать или рекомендовать к покупке этот товар я не могу. Слишком специфичный товар. Я лично покупкой прям очень доволен. И это самое главное.
В следующем месяце у меня планируется дальняя поездка на машине, и я ее жду не столько ради цели поездки, сколько ради возможности послушать переговоры и протестировать приёмник в полевых условиях.

Планирую купить +104 Добавить в избранное Обзор понравился +107 +195

УКВ (FM) приемник является неотъемлемой частью звуковоспроизводящего комплекса любой сложности. Современные схемотехнические решения и элементная база позволяют достигнуть высоких характеристик приема. Поэтому, радиолюбитель, взяв за основу одну из типовых схем, может сосредоточить свое внимание на улучшении сервисных характеристик конструируемого устройства. В первую очередь это относится к органам настройки.

В последние годы четко обозначилась тенденция отказа от механических шкал и органов настройки, управляемых при помощи сложных верньерных устройств. В радиолюбительской практике это связано еще и с тем, что изготовление хорошей и красивой шкалы и верньерного устройства в кустарных условиях проблематично.

Большинство современных приемников настраиваются при помощи варикапов, это дает возможность осуществлять настройку при помощи цифровых синтезаторов напряжения с квазианалоговыми шкалами, где бегунок имитируется светящимся светодиодом или сегментом индикатора.

А настройка осуществляется нажатиями на кнопки "+" и "-". В радиолюбительской литературе опубликовано немало подобных устройств разной сложности, однако большинству из них присущ существенный недостаток:
кнопку приходится удерживать все время настройки. Скорость перестройки при ручном управлении мала, и для перестройки по всему диапазону приходится удерживать кнопку в течении 15-20 секунд.

Однако есть и другие способы построения таких устройств. Практически все современные микросхемы для ЧМ-приемников, кроме К174УР3, имеют выход напряжения точной настройки для подключения индикатора. Этот выход можно использовать для автоматизации процесса настройки, так чтобы было достаточно одного короткого нажатия на кнопку.

Как показывает практика, в большинстве случаев достаточно перестройки приемника в одну сторону с возможностью возврата на начало диапазона кнопкой "сброс". Подобный способ применяется в портативных приемниках зарубежного производства, построенных на TDA7088 или её аналогах. Скорость перестройки при этом может быть достаточно высокой и настройка приемника, оснащенного таким устройством, практически не отличается от перебора по кольцу фиксированных настроек.

Принципиальная схема такого узла настройки (сканера) приведена на рисунке 1. Тактовый генератор выполнен на элементах D1.1 и D1.2, его частота выбрана около 7 кГц. При такой частоте на перекрытие всего диапазона требуется около 2,5 секунд. Управление генератором осуществляется при помощи RS-триггера на элементах D1.3 и D1.4.

При подаче напряжения питания цепь R4 С3 формирует короткий импульс сброса, устанавливающий счетчик D2 в нулевое состояние. Этот же импульс, через диод VD1 и конденсатор С2 устанавливает RS-триггер D1.3-D1.4 в нулевое состояние Низкий уровень на выводе 2 D1.1 разрешает работу тактового генератора и состояние счетчика D2 начинает изменяться. Для преобразования двоичного кода в напряжение применяется АЦП на основе R-2R матрицы R5-R26. Достоинство такого решения в том, что в матрице используются резисторы всего двух номиналов, что существенно упрощает подбор элементной базы.

Полученное, таким образом, напряжение настройки снимается с конденсатора С5 и через резистор R27 подается на варикапы приемника.

Принципиальная схема сканирующего уст-ва для УКВ-ЧМ приемника показана на рис.1. Тактовый генератор выполнен на элементах D1.1 D1.2, его частота 7000Гц. Такая частота обеспечивает перекрытие всего диапазона за 2,5с. Генератор управляется при помощи RS-триггера на D1.3 D1.4.
При подачи питания цепь R4C3 устанавливает счетчик D2 в нулевое состояние. Низкий уровень на выводе 2 D1.1 разрешает работу тактового генератора и состояние счетчик начинает изменятся. Для преобразования двоичного кода в напряжение используется матрица R5-R26. Полученное напряжение снимается с С3 и через R27 подается на варикапы приемника.
Напряжение точной настройки с приемника поступает на вход компаратора выполненного на ОУ А1. На инвертирующий вход подается опорное напряжение с движка R3. Пока приемник не настроен на станцию, напряжение точной настройки мало, на выходе А1 присутствует ноль. При настройке на станцию напряжение на неинвесном входе компаратора возрастает, и когда оно превысит опорное напряжение, компаратор переключится в единичное состояние. Короткий импульс сформированный цепью С6R28 переключит RS-триггер на D1.3D1.4 в состояние лог.1. Эта единица запрет дальнейшую работу генератора и счетчика D2. таким образом приемник окажется настроенным на станцию.
При нажатии SB1 снова запустится счётчик, для дальнейшей настройки на другую станцию. Для возврата на начало диапазона служит кнопка SB2.

Для индикации расположения станции по диапазону служит схема показанная на рис.2.

На рисунке 3 показана схема подключения к микросхеме К174ХА42 которая не имеет выхода точной настройки, но его не сложно получить добавив в схему приемника на К174ХА42 несколько элементов.

Данная схема сканирующего уст-ва предназначена для схем приемников с прямо-пропорциональным уровнем принимаемых сигналов, но если микросхема имеет обратный закон формирования напряжения точной настройки достаточно поменять местами входы компаратора А1.

Налаживание уст-ва сводится к настройке опорного напряжения (R3). Если не необходимости принудительного возврата в начало диапазона, то кнопку SB2 можно убрать, получится достаточно удобный сканер с круговым управлением поиска радиостанций.

Литература РК2001-6

  • Похожие статьи

Войти с помощью:

Случайные статьи

  • 20.09.2014

    Триггер — это уст-во с двумя устойчивыми состояниями равновесия, предназначенные для записи и хранения информации. Триггер способен хранить 1 бит данных. Условное обозначение триггера имеет вид прямоугольника, внутри которого пишется буква Т. Слева к изображению прямоугольника подводятся входные сигналы. Обозначения входов сигнала пишутся на дополнительном поле в левой части прямоугольника. …

Длительное время радиоприемники занимали одно из первых мест по популярности среди других радиоэлектронных конструкций. Появление новых звуковоспроизводящих устройств, CD-плееров, магнитофонов и бурное развитие компьютерной техники оттеснило с ведущих позиций радиоприемную технику, не снизив ее значимости.

Приемники подразделяются на детекторные, прямого усиления, супергетеродинного типа, прямого преобразования, с положительными обратными связями (регенеративные, сверхрегенеративные) и др.

Простой двухтранзисторный радиоприемник прямого усиления

Простой приемник прямого усиления показан на рис. 1 [МК 10/83-11]. Он содержит перестраиваемый входной колебательный контур — магнитную антенну и двухкаскадный усилитель НЧ.

Первый каскад усилителя одновременно является детектором ВЧ модулированного сигнала. Как и многие ему подобные простые приемники прямого усиления, этот приемник способен принимать сигналы мощных, не столь удаленных радиостанций.

Катушка индуктивности намотана на ферритовом стержне длиной 40 и диаметром 10 мм. Она содержит 80 витков провода ПЭВ-0,25 мм с отводом от 6-го витка снизу (по схеме).

Рис. 1. Схема простого радиоприемника на двух транзисторах.

Рефлексный приемник Ю. Прокопцова

Радиоприемник, сконструированный Ю. Прокопцевым (рис. 3), предназначен для приема в средневолновом диапазоне [Р 9/99-52]. Приемник собран также по рефлексной схеме.

Рис. 3. Схема рефлексного радиоприемника на СВ диапазон.

Антенна выполнена из отрезка ферритового стержня 400НН длиной 50 и диаметром 8 мм. Катушка L1 содержит 120 витков провода ПЭЛШО-0,15 мм однослойной намотки, а L2 — 15...20 витков того же провода. Налаживание приемника сводится к установке коллекторного тока транзистора VT2, равным 8... 10 мА, с помощью резистора R2. Затем настраивают коллекторный ток транзистора VT3 в пределах 0,3...0,5 мА подбором резистора R4.

Приемники супергетеродинного типа в рамках настоящего обзора рассматривать не будем. Впрочем, при желании они могут быть получены объединением приемника прямого усиления (рис. 1 - 3) и конвертера (рис. 10), либо из приемника прямого преобразования (рис. 11).

Сверхрегенеративный радиоприемник на FM диапазон

Сверхрегенеративный радиоприемник обладает высокой чувствительностью (до ед. мкВ) при достаточной простоте. На рис. 4 приведен фрагмент схемы сверхрегенеративного радиоприемника Е. Солодовникова (без УНЧ, который может быть выполнен по одной из приводимых ранее схем - Простейшие усилители низкой частоты на транзисторах) [Рл 3/99-19].

Рис. 4. Схема сверхрегенеративного радиоприемника Е. Солодовникова.

Высокая чувствительность приемника обусловлена наличием глубокой положительной обратной связи, благодаря которой коэффициент усиления каскада после включения радиоприемника довольно быстро возрастает до бесконечности, схема переходит в режим генерации.

Для того чтобы самовозбуждение не происходило, а схема могла работать как высокочувствительный усилитель высокой частоты, используют очень оригинальный прием. Как только коэффициент усиления каскада усиления возрастет выше некоторого заданного уровня, его резко снижают до минимума.

График изменения коэффициента усиления от времени напоминает пилу. Именно по этому закону изменяют коэффициент усиления усилителя. Усредненный же коэффициент усиления может доходить до миллиона. Управлять коэффициентом усиления можно при помощи специального дополнительного генератора пилообразных импульсов.

На практике поступают проще: в качестве такого генератора используется по двойному назначению сам высокочастотный усилитель. Генерация пилообразных импульсов происходит на неслышимой ухом ультразвуковой частоте, обычно десятки кГц. Для того чтобы ультразвуковые колебания не проникали на вход последующего каскада УНЧ, используют простейшие фильтры, выделяющие сигналы звуковых частот (R6C7, рис. 4).

Сверхрегенеративные приемники обычно используют для приема высокочастотных (свыше 10 МГц) сигналов с амплитудной модуляцией. Прием сигналов с частотной модуляцией возможен за счет преобразования частотной модуляции в амплитудную и последующего детектирования эмиттерным переходом транзистора полученного таким образом амплитудно-модулированного сигнала.

Преобразование частотной модуляции в амплитудную происходит в случае, если приемник, предназначенный для приема амплитудно-модулированных сигналов, настроить неточно на частоту приема частотно-модулированного сигнала.

При такой настройке изменение частоты принимаемого сигнала постоянной амплитуды вызовет изменение амплитуды сигнала, снимаемого с колебательного контура: при приближении частоты принимаемого сигнала к частоте резонанса колебательного контура амплитуда выходного сигнала растет, при удалении от резонансной — снижается.

Наряду с неоспоримыми достоинствами, схема «сверхрегенератора» обладает массой недостатков. Это - невысокая избирательность, повышенный уровень шумов, зависимость порога генерации от частоты приема, от напряжения питания и т.д.

При приеме радиовещательных ЧМ-сигналов в диапазоне FM - 100...108 МГц или сигналов звукового сопровождения телевидения, катушка L1 представляет собой полувиток диаметром 30 мм с линейной частью 20 мм. Диаметр провода — 1 мм. L2 имеет 2...3 витка диаметром 15 мм из провода диаметром 0,7 мм, расположенных внутри полувитка.

Для диапазона 66...74 МГц катушка L1 содержит 5 витков диаметром 5 мм из провода 0,7 мм с шагом 1...2 мм. L2 имеет 2...3 витка такого же провода. Обе катушки не имеют каркасов и расположены параллельно друг другу. Антенна выполнена из отрезка монтажного провода длиной 50... 100 см. Настройку устройства осуществляют потенциометром R2.

Регенеративные радиоприемники на транзисторах КП303

Регенеративные приемники, или приемники, использующие для увеличения чувствительности положительные обратные связи, в промышленных разработках не встречаются. Однако для освоения всевозможных вариантов реализации приемной техники можно рекомендовать ознакомиться с работой двух таких устройств конструкции И. Григорьева (рис. 5 и 6) [Рл 9/95-12; 10/95-12].

Рис. 5. Схема приемника для приема сигналов AM в диапазоне КВ, СВ и ДВ.

Приемник (рис. 5) предназначен для приема сигналов AM в диапазоне коротких, средних и длинных волн. Его чувствительность на частоте 20 МГц достигает 10 мкВ. Для сравнения: чувствительность наиболее совершенного приемника прямого усиления примерно в 100 раз ниже.

Рис. 6. Схема простого регенеративного радиоприемника на диапазоны частот 1,5...40 МГц.

Приемник (рис. 6) способен работать в диапазоне 1,5...40 МГц. Для диапазона 1,5...3,7 МГц катушка L1 имеет индуктивность 23 мкГн и содержит 39 витков провода диаметром 0,5 мм на каркасе диаметром 20 мм при ширине намотки 30 мм. Катушка L2 имеет 10 витков такого же провода и намотана на этом же каркасе.

Для диапазона 3...24 МГц катушка L1 индуктивностью 1,4 мкГн содержит 10 витков провода диаметром 2 мм, намотанного на каркасе диаметром 20 мм, при ширине намотки 40 мм. Катушка L2 имеет 3 витка с диаметром провода 1,0 мм.

В диапазоне 24...40 МГц L1 (0,5 мкГн) содержит 5 витков, ширина намотки — 30 мм, a L2 имеет 2 витка. Рабочую точку приемников (рис. 5, 6) устанавливают потенциометром R4.

УКВ ЧМ радиоприемник на транзисторе ГТ311

Для приема сигналов ЧМ можно использовать УКВ приемники прямого преобразования с фазовой автоподстройкой частоты. Такие приемники содержат преобразователь частоты с совмещенным гетеродином, выполняющим одновременно функции синхродетектора.

Рис. 7. Схема УКВ ЧМ радиоприемника А. Захарова на диапазон частот 66...74 МГц.

Входной контур устройства настроен на частоту приема, контур гетеродина — на частоту приема, деленную пополам. Преобразование сигнала происходит на второй гармонике гетеродина, поэтому промежуточная частота находится в звуковом диапазоне. Схема приемника А. Захарова показана на рис. 7 [Р 12/85-28]. Для диапазона частот 66...74 МГц бескаркасные катушки с внутренним диаметром 5 мм и шагом намотки 1 мм содержат, соответственно, 6 витков с отводом от середины (И) и 20 витков (L2) провода ПЭВ-0,56 мм.

Простой приемник прямого усиления с рамочной антенной

Простой средневолновый радиоприемник прямого усиления, собранный по традиционной схеме Г. Шульгиным (рис. 8) имеет рамочную антенну [Р 12/81-49]. Она наматывается на заготовке: пластине из фанеры размерами 56x56x5 мм. Катушка индуктивности L1 (350 мкГн) имеет 39 витков провода ПЭВ-0,15 мм с отводом от 4 витка снизу (по схеме).

Рис. 8. Схема радиоприемника с рамочной антенной на СВ диапазон.

Простой радиоприемник с входным каскадом на полевом транзисторе

На рис. 9 показан простой радиоприемник Г. Шульги (без УНЧ) с входным каскадом на полевом транзисторе [Р 6/82-52]. Магнитную антенну и конденсатор переменной емкости используют от старого радиоприемника.

Рис. 9. Простой радиоприемник Г. Шульги.

Схема конвертера-преобразователя частоты FM диапазона

Конвертер-преобразователь частоты Э. Родионова, рис. 10, позволяет «переносить» сигналы из одной полосы частот в другую частотную область: с 88... 108 МГц на 66...73 МГц [Рл 4/99-24].

Рис. 10. Схема конвертера с 88... 108 МГц на 66...73 МГц.

Гетеродин (генератор) конвертора собран на транзисторе VT2 и работает на частоте примерно 30...35 МГц. Катушка И выполнена из обмоточного провода длиной 40 см, намотанного на оправку диаметром 4 мм. Настройку конвертора производят растягиванием или сжатием витков катушки L1.

Входные цепи супергетеродина и приемника прямого преобразования

Наконец, на рис. 11 показана схема входной цепи простейшего супергетеродинного приемника, а на рис. 12 приемника с нулевой промежуточной частотой — приемника прямого преобразования.

Рис. 11. Схема конвертера В. Беседина.

Конвертер В. Беседина (рис. 11) «переносит» входной сигнал из полосы частот 2...30 МГц на более низкую «промежуточную» частоту, например, 1 МГц [Р 4/95-19]. Если на диоды VD1 и VD2 подать сигнал частотой 0,5...18 МГц от ГВЧ, то на выходе LC-фильтра L2C3 выделится сигнал, частота которого f3 равна разности частоты входного сигнала f1 и удвоенной частоты гетеродина f2: f3=f1-2f2 или Af3=Af1-2f2.

А если эти частоты кратны друг другу (f1=2f2), рис. 2, то к выходу устройства можно подключить УНЧ и принимать телеграфные сигналы и сигналы с однополосной модуляцией.

Рис. 12. Схема конвертера на транзисторах.

Заметим, что схема на рис. 12 легко преобразуется в схему на рис. 11 заменой транзисторов в диодном включении непосредственно диодами, и наоборот.

Чувствительность даже простых схем прямого преобразования может достигать 1 мкВ. Катушка L1 (рис. 11, 12) содержит 9 витков провода ПЭВ 0,51 мм, намотанных виток к витку на каркасе диаметром 10 мм. Отвод от 3-го витка снизу.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год.

Новое на сайте

>

Самое популярное